一般1升海水中含有32~38克各种矿物质,而且其中有80%是食盐成分中的钠离子和氯离子。我们尝一下海水,味道是涩(咸)的就是这个道理。
海洋元素
其他还有什么元素呢?
19世纪的化学家对这个问题非常感兴趣,世界各国的学者都研究海水的成分。
资料渐渐地完善起来,人们开始明白,尽管不同海域的盐类的浓度不同,但是其中主要元素的排列顺序和其所占的比率是一定的。
孔虫
确证这个事实要追溯到1872~1876年英国的挑战者号的探险航行。这次探险航行是近代海洋学的开始,它在海水、海洋生物、海底地质等众多方面都有重大的研究成果,最后总结的报告书竟然多达50卷。其中包括格拉斯哥大学的迪托马教授对采集的77个海水水样的分析结果。
根据迪托马教授的报告,数量上排第3位的是硫酸根离子,第4位是镁离子。对于迪托马的分析结果,之后百年间大批学者反复进行了检验,证明这个分析结果和现在最精确的值之间几乎没有差异。这个事例也证明了大英帝国当时的科学水平。
其中8种元素约占海水中总溶质的99%左右,再加上锶、硼酸、氟等3种元素则占到99.7%之多。此外的元素的含量极少。
为了了解海洋的结构,海洋学家从很早就开始分析研究海水的盐类成分,而这种研究之所以可以成立,是因为海水的主要组成元素是一定的。
海洋元素的一生
来自大陆的海洋物质要么经过河流汇入大海,要么随风雨直接进入大海洋和陆地的物质循环海。近来的研究也证明海底温泉中也有不少物质随之进入大海。
进入海洋的物质不断在海中循环,时而进入生物体内,时而发生化学反应,最后会变成沉积物离开海洋。如果只注意某一个原子,我们就会了解某个海洋元素的“一生”了。
某元素的大量的原子在海洋中的寿命的平均值被称为“平均停留时间”,就像人类的平均寿命一样。
假设海水中各元素的浓度不受时间的影响,永远恒定,那么,溶入海水的元素量和离开海水的元素量应该相同,所以元素的平均停留时间就等于海洋中现存该元素的总量除以每年进入海洋(或者离开海洋)的量的值。
海洋中含量最高的氯和钠的平均停留时间在1亿年以上,比其他任何元素都久,可以说是海洋世界的“元老”了。
这是因为发生了“水和反应”(氯离子和钠离子进入水的空隙中并被水分子包围),在海水中性能极其稳定,基本上不会因为发生化学反应而离开海洋。
主要的8种元素中平均停留时间最短的是钙元素,大约500万年。
这主要因为珊瑚、有孔虫、圆石藻之类的浮游生物会吸收海水中的钙离子生成碳酸钙的壳。当它们死亡后尸体就沉积在海底,钙离子也离开了海洋。
海水在大西洋、印度洋、太平洋的上层和底层之间不断循环,循环一次大概需要1000年。海水中的钙在离开海水之前至少要在各个海域循环5000次以上,所以海水的元素构成才如此平均。
重金属粒子易发生吸附反应,所以在海中的平均停留时间较短。铝元素平均只有几十年。当然这类元素和主要元素不同,在不同的海域和深度有不同的浓度。
海水的PH
化学上用酸碱度和pH来表示水溶液的状态。这些数值可以表示这种溶液能够溶解何种元素。
纯水中绝大多数是水分子(H2O),极少数的水分子电离为氢离子(H+)和氢氧根离子(OH-)。在5亿个水分子中只有1个水分子被电离。
氢离子浓度的倒数的对数值就是PH。纯水的PH=7,称为中性,氢离子和氢氧根离子浓度相等。
当PH<;7,即水中的氢离子浓度大于纯水时为酸性;当PH>;7,即水中的氢氧根离子浓度大于纯水时为碱性(参阅下图)。
海水的PH示意图表层海水的PH=8.2,在任何海域都相同,呈弱碱性。
用烧杯装取一定量的海水,徐徐滴入盐酸或磷酸,PH会慢慢降低。当PH小于4时有气泡产生。这种气泡和苏打水中的气泡一样,主要成分都是二氧化碳。
如果在海水中滴入碱性苏打或氨水,PH将上升(碱化),把它暴露在空气中将吸收二氧化碳。
表层海水的PH之所以稳定在8.2左右,是因为海水中的碳酸氢根离子(HCO-3)、碳酸根离子(HCO2-3)和空气中二氧化碳发生化学平衡的结果。
当然,海水的PH并不是永恒不变的。珊瑚和圆石藻成长时会吸收碳酸钙,使海水PH降低,而深海海底由于碳酸钙的溶解PH又会升高。
当浮游植物进行光合作用时会消耗二氧化碳,PH升高;当深层中的有机物被分解时会产生二氧化碳,PH降低。
例如,在水深2,000米左右的北太平洋处的海水很古老,含有许多有机物的分解物,PH降到7.7,几乎为中性。
北太平洋和北大西洋的PH(垂直分布)
海洋中的氧化还原
我们经常看到风吹雨淋后锈迹斑斑的铁钉。这是金属铁和空气中的氧气结合后生成了三氧化二铁(Fe2O3)。当纸或木头燃烧时,碳元素和氧气结合反应生成二氧化碳。这种现象叫做“氧化反应”。
氧化反应的逆形式便是“还原反应”。在氧化反应中铁和碳原子由于失去电子(e)而被氧化,氧气则因为得到电子而被还原。
氧化←→还原的进行顺序空气中21%的氧气在自由游荡,是一个极强的氧化环境,也正是因为这样动物才可以呼吸生存,才会有火灾发生。
海水中的氧化还原反应也可由固定的几种元素来表示。
由于海水的PH在8.2左右,氢离子的浓度是一定的,所以海水中溶解的氧气的多少是决定其氧化条件的关键。
1升的海水在0℃时可以溶解8毫升的氧气,在25℃时可以溶解5毫升的氧气。海水具有较强的氧化能力。
在中深海层,浮游生物尸骸的分解要消耗大量的氧气。但是太平洋、印度洋、大西洋等大洋中仍然残余着大量氧气。海水中的铁、锰等元素被氧化后成为三氧化二铁和二氧化锰沉淀在海底。
在黑海及一部分峡湾等地方则略有不同。在这些海域,深层的海水缺少流动,从海面上层沉淀下的有机物将氧气消耗殆尽,所以有很强的还原性。
在这种缺氧环境中,需要呼吸的鱼或原生动物根本不可能生存。当溶解在海水中的氧气分子被消耗完后,有机物的分解反应开始利用硝酸根离子、氧化铁、氧化锰及硫酸根离子中的氧元素。
因此黑海海底200米以下和其他海域不同,出现了其他海域中没有的氨离子和硫化氢离子,同时铁和锰也以2价的阳离子(易溶于水)存在,浓度也较高。
海洋中的氧化还原大洋深海表层的沉积物由于和含氧的海水接触,所以呈三氧化二铁的红褐色。含有大量的有机物的大陆斜面和沿岸的沉积物则逐渐变成还原性物质,由于硫化沉淀物的影响呈灰或黑色。这种沉淀物的气味和臭鸡蛋相似。
当连硫酸也被彻底消耗完后,碳酸也最终被还原,生成甲烷气泡。在海洋中极少有这种强还原性的情况发生,但在海湾中偶尔存在。
据估测,大约20亿年前浮游植物开始进行光合作用,大气中的氧气开始积蓄。在此以前地球的环境可能和深海海底相似,为一个缺少氧气、还原性极强的世界。
获取深海水
要分析海水的化学成分就必须获得海水的样本。表层海水用水桶和水泵就可以获取,但是几千米深处的海水就要另想办法了。
科学家们为此专门设计了特殊的容器。在船上垂下的缆绳的一端固定上铅锤块,将取水容器垂到预定的深度,然后当绞轮转动时容器的盖子就会自动合上。
这时大致的深度可以由放出的缆绳的长度来推算。当然精确的水压和水温则由转倒式水银温度计测得。
从20世纪初到70年代为止使用的采水器是挪威海洋学家南先设计的。
尼斯金采水器
这种采水器将缆绳缠绕在金属锤上,从船上放入海中。当金属锤碰到采水器的开关时,采水器的夹簧脱开和温度计呈倒置状,令采水器的阀门关闭。与此同时系于此采水器上的金属锤下落,撞击下一个采水器的开关。
就这样固定在缆绳上的采水器一个接一个地动作,采取不同深度的海水。这种采水器的设计非常优秀,失败率很低,在世界上曾经广为使用。但是因为它是金属制造的,采集的海水会受到少许的污染,并且每次所能采集到的海水较少,只有2~3升。
取而代之的是美国人尼斯金设计的塑料制成的采水器。这种采水器仍使用机械信子传递信号控制采水器的动作,但是容器的筒并不翻转,上下的盖子一起闭合。这种方式一次最多可以采集30升的海水。近来机械信子也逐渐被电信号取代,只要操作船上发出电信号,采水器的盖子就会闭合。
在测定超微量的重金属和有机物时,尼斯金采水器仍然会导致杂质产生。在进行这些研究分析时则采用其他特殊的采水器。
现在科学家们仍然不断地在改良采水器,防止采水时产生杂质。如果固定采水器的缆绳是金属的,由于生锈必然会产生杂质。东京大学海洋研究所的“白凤丸”号船上安装了世界上第一根钛质缆绳,并在无尘房间中进行分析操作。
有的科学家需要大量优质的海水样本。例如研究微量放射性原子或同位素的科学家。现在的采水器可以一次性在2个不同的深度采取270升的海水。对于研究海水的化学成分的工作来说,获得“正确的海水样本”是第一步,也是最重要的一步。
由缆绳联结的采水器挑战超微量分析
1纳克等于1/10亿克。海水中的微量元素含量非常小,甚至有不少的元素的浓度还无法测定。
挑战超微量分析
1升海水中所含的氯元素和钠元素在10克以上,但是所含的微量元素却极少,正确地分析测定它们的含量非常困难。历史上科学家无数次认为已测得了正确值,又无数次地进行了修正。
直到1975年才第一次获得了精确的铜、镍、镉等元素的测定值。自那以后便飞速地发展,至今为止不能确定浓度的只有几种白金族元素和铌、钽、铪、锡等十多种元素。
微量元素在海水中的浓度很低,一方面是因为这些物质在地壳中存在的浓度本来就小,另一方面则是因为它们在海水中的平均停留时间很短。这些元素大多很难在水中形成稳定的离子,易吸附于黏土粒子或其他生物粒子,在较短的周期(几十年到1000年左右)离开海水。
以铝元素为例,铝在地壳中约占8%的比例,但是在1千克的海水中仅含铝几纳克。这是因为铝元素很容易形成氢氧化铝沉淀,它的平均停留时间约为100年。这种现象统称为“净化”。
根据至今为止的调查结果,微量元素在海洋的垂直分布主要有3种类型。
超微量元素的垂直分布分类第一类元素同主要元素一样,浓度并不随垂直深度的变化而变化,如铀、钼等元素。铀形成碳酸铀络合物,钼形成钼酸离子,在海水中形成较稳定的离子。它们在海水中的平均停留时间比较长。
第二类元素在表层较少,随着海水深度的增加而增加。这类元素约有30种之多。这些元素是生物生长过程中必需的,和硝酸、磷酸非常相似,所以也被称为“营养盐型”。
第三类元素在表层较多,随海水深度的增加而减少,如铝、铅等元素。这类元素易被“净化”反应除去,在海水中的平均停留时间较短。
海水中元素的分布不仅和该元素的化学性质、溶解度有关,而且和海洋生物的生产发育及分布有密切关系。
这些元素和其化合物可以用来解释海洋生物的活动和海水的流动等海洋基本现象。
海洋的生产性
植物利用阳光的能量将二氧化碳和水结合成有机物以维持自身的生长,海洋的年平均第一次生产量这个过程叫光合作用。当然在这个过程中氮、磷、钾、硫、铁、镁和微量但又必需的“营养素”是不可缺少的。
氮是生成蛋白质的氨基酸必需的,磷则是细胞中核酸的构成元素,如果缺少植物就不能生长。我们在种植植物时,在浇水之外还要不时地施肥,这就是为了补充常常不足的营养素。
在研究营养素和植物生长之间的关系时发现,营养素的供给量是决定植物发育的重要因素。在此方面最有名的定理是以19世纪中叶在这方面成果丰富的学者的名字命名的“利比希最小律”。
浮游生物的元素组成
在海面下100米以内的水层存在着许多肉眼看不见的浮游植物。它们利用太阳光进行光合作用。整个海洋中的光合作用产生的有机物数量和陆地上的草原和森林的植物的生产量相差无几。
海洋生物的生产能力竟然如此强大,让人难以置信。其实这是因为浮游植物的细胞分裂增殖速度要明显快于草和树木,也就是生命循环的速度较快。
数量不断增加的浮游植物成为浮游动物的食物,浮游动物又成为鱼和鲸鱼的食物浮游植物在最根本地保证着海洋生物的生存,所以它们被称为海洋的“第一次生产者”。
利比希最小律就是针对第一次生产者而言的。虽然在不同的海域存在一些差异,海水各成分中对于植物来说最稀缺的是氮。氮的供给量决定了第一次生产的进行(磷也同样稀缺)。
美国东海岸柯德半岛的武兹保尔海洋研究所的阿尔福莱德·莱德菲尔注意到,海洋中各种微量营养素的比例和浮游生物的平均元素组成之间有微妙的一致性。
经过全面的研究,科学家发现浮游植物在繁殖时吸收的碳、氮、磷等元素的比例随着物种的不同可能有所变化,但是整体的比例是一定的。
在光合作用过程中,平均每1个磷原子需要16个氮原子和106个碳原子来构成有机物,同时释放出276个氧原子。而当浮游生物死后这个过程就向逆方向进行,溶解在海水中的氧气将有机物氧化,释放出二氧化碳、硝酸、磷酸等。
这些元素间的关系体现在海洋中微量营养素的分布上。这个值称为“莱德菲尔比”。如果这一平衡被破坏,浮游植物的生长繁殖将受到阻碍。
在氮、磷之外还有许多元素是必不可少的。比如对于硅藻和放散虫等硅酸质壳动物,硅元素的稀缺会阻碍其生长发育。
近期的研究还表明,铁和亚铅等微量重金属也是必不可少的,如果缺少则会影响浮游植物的增殖。
海洋包含的“铁”
美国加利福尼亚州莫斯·兰丁实验所的约翰·马丁是位海水微量元素分析专家,他在如何采集样本和分析方法方面都有贡献,并彻底查明了钴、锰、银、铅等元素的分布,并且最终成功地分析了铁元素。
铁元素在地壳中约占5%,但是由于海水的“净化”作用,在海水中的浓度极其小。
采取海水样本时必须驾船出海,而船是钢铁制成的,难免到处是铁锈,固定采水器的缆绳也是钢铁的,必须十分注意由这些产生的杂质。
1988年,马丁终于证明,铁的分布为营养盐型,表层较少,随着海水的增加而增加。
海中铁含量最早对铁元素的测定是在阿拉斯加湾进行的,结果表明在海水表层由于生物活动导致稀缺的氮、磷等元素的浓度仍然较高,但是铁元素的浓度却极低。
是不是根据利比希最小律,由于铁的缺乏而妨碍了浮游生物的繁殖,导致大量的磷和硝酸剩余呢?
铁是继氮、磷、钾之后又一种必需的营养素,是合成与光合作用紧密相关的细胞色素酶的必要元素。由于陆地的土中含有大量的铁,所以从没有缺少的情况发生。
但是海水的情况就不同了。由于铁在海水中迅速被氧化成三氧化二铁而产生沉淀,所以必须注意铁元素不足的情况。
马丁运用他多年来研究海洋微量元素的经验采集到无杂质的海水样本,并对有铁和无铁情况下浮游植物的繁殖速度进行了比较。结果表明,有铁情况下的繁殖速度要快得多。
不同海域浮游植物铁元素对比实验证明,生物按照莱德菲尔比顺利生长繁殖的必要条件是对于1个单位的磷要有1/200单位的铁存在。
南极海和赤道附近海域的表层海水的营养素非常丰富。如果人为地向海水中增加铁元素,会不会加速这些海域的生物生育?
据估算,要令南极海表层的氮和磷全部被有效地利用,大约需要30万吨的铁,而这仅仅是大型油轮用铁量的一半。
马丁想到:“如果适当地将大气中的多余的二氧化碳经浮游植物转化成有机物积蓄在海洋中,就可以降低大气中的二氧化碳的浓度,防止温室效应影响地球。”
马丁的这一设想的有效性和对生物圈的影响在全球都引起了广泛的争议。
多数专家学者认为这个方法不大可能成为解决地球温暖化的救世主。现在这个方法正在进行小规模海上试验,并在研究它的波及效应。
海雪
让我们想象乘坐潜水艇潜入海底的过程。随着深度的增加,光亮开始减弱,渐渐变成一个深蓝色的世界,最后四周一片漆黑。
坐在艇内向窗外望去,偶尔会有亮点一闪而过——是发光生物们。
打开探照灯,窗外竟然漂着雪花一样的物质。当潜水艇下降时雪花自下而上运动,当潜水艇上升时雪花自上而下运动,如下雪一样。这就是“海雪”。
雪花各式各样,大多如鹅毛大雪,一块块凝结在一起,似乎一触即化。这些物质有的是浮游生物的尸骸被鱼类吞食后排出的粪便,这些物质再被分解,就变得面目全非;有的是陆地上随流而来的矿物颗粒球。
海雪给深海带来季节变化这种海雪漂荡在海水中,承担着将海水表层生产的物质搬运到深海的重要任务。同时它也影响着海洋微量元素的分布。
浮游生物的残骸在中、深层海被氧化分解,按照莱德菲尔比产生氮、磷、碳等元素。因此中、深层的海水的营养素比表层丰富。
不仅是海水中的营养素受海雪的影响,其他多种微量重金属也受海雪的影响而变化。
海雪中除了有机物,大部分是硅藻等的硅酸盐外壳或者圆石藻和有孔虫的碳酸盐外壳。这两种成分的比例随海域和深度的不同而不同。而那些同生物无关的物质主要是来自陆地的土壤粒子和海水中的沉淀物。
那些同生物生长密切相关的颗粒的沉降量随表层海面中生物生产力的高低不同而差异明显。海雪的化学成分也随海域和季节的不同而变化。
北太平洋和南极海的海雪中硅藻偏多,而北大西洋的海雪中石灰质的圆石藻偏多。有机物的比例一般随深度的增加而减小,有的在中途就发生分解。
尽管如此,到达海底的海雪中仍然含有许多新鲜的有机物,是深海生物高营养的食物。另外,海雪的沉降量随表层生物的生产季节而变化,从而也使得海底生物可以感觉到季节的变化。
海洋和大气的气体交换
动物的呼吸作用就是吸入氧气,排出二氧化碳的代谢活动。吸入的氧气用于分解有机物以产生能量。如果把呼吸看成这么一种化学反应,那么,中深层的海水里的生物,像鲸鱼,一样也会呼吸。
在第三章就解释过,格陵兰海和南极附近的海洋表层水在冬季冷却后密度会变大,导致下沉。这时1千克的海水通过大气的气体变换大约含7毫升的气体(水温越低可以溶解的氧气越多)。
这就像鲸鱼刚刚吸足空气准备下潜时的状态。当氧气在有机物的分解过程中渐渐被消耗时,作为分解反应的产物,二氧化碳的浓度开始升高。
鲸鱼这时分解的是磷虾等食物带来的有机物。海水氧化的则是从表层落下的海雪。总之,沉下的时间越长氧气就越缺乏,而二氧化碳的含量则在不断增加。
然后沉下的海水再次涌上海面和大气接触,将过剩的二氧化碳排出,再吸进缺少的氧气,就像鲸鱼的呼吸作用一样。
这种同生物活动和海洋循环同时进行的海洋同大气的气体交换对大气中的氧气和二氧化碳的浓度影响很大。大气中的二氧化碳只占0.035%,比氮气和氧气少得多,所以受海洋的影响很明显。
海洋表层生产的有机物的一部分作为海雪沉入海底,在海底被分解放出二氧化碳的过程以及碳酸盐甲壳溶解后形成钙离子和碳酸根离子的过程就像深海中的香槟工厂一样。
现代将这一过程称为“生物泵”。由于这个过程的作用,大海中的二氧化碳含量约为大气中的2倍。海水的循环和气体的交换在对封闭在格陵兰和南极海冰床中的气泡(古代的气体)进行分析后发现,12,000~24,000年前的冰河时期的大气中的二氧化碳浓度只有现在的2/3。冰河时期陆地上的植物比现在少,减少的部分应该全部被海洋吸收了。
可能当时的海洋循环和物质循环与现在不同,当时的海洋中深层的二氧化碳含量可能比现在更高。
假设浮游植物全部消亡,那样将会如何?储藏在海洋中的二氧化碳将随着海水的循环排到大气中,大气中的二氧化碳会升高。
那么,如果海洋的循环停止后又会怎样?海洋深层的营养素不再循环到海洋表层,浮游植物数量会显著减少。
这样光合作用生产的有机物也会减少,结果导致空气中二氧化碳含量增加。地球上由于过度燃烧各种化石燃料导致二氧化碳含量增大,引发温室效应。在解决这个问题上海洋起了重大作用。
化学追踪
我们明显地感到黑潮、亲潮等表层海流的流动,但却不知道海洋深层的水也在流动。
事实上海洋很广阔,海水的流动有时形成旋涡,又随时发生变化,很难用简单的物理方法将其用平均循环图的形式表述。
比较经典的方法是根据密度大的海水将下沉,从而导致含氧量降低,而随着有机物的分解硝酸离子和磷酸根离子等营养素的浓度会增加这一原理来推测海水的流况。一般海水向氧气含量减少的方向流动,或者说向营养素浓度高的方向流动。
根据这个原理我们可以发现大西洋、南极海、印度洋、太平洋的深层水年龄依次增加。
根据这种化学成分的分布情况同地球的流体理论的结合,麻省理工学院的H.斯顿梅尔和哥伦比亚大学的W.S.布洛卡画出了海洋循环图,但是这也只是把握了一个大概而已。
其实除了氧气,可以说明海水流动的化学物质还有很多。1960年的核试验中释放的大量的氚便对研究物理方法较难解决的深层水的形成过程和温度跳跃层(深度增加时温度剧减的层)的垂直混合现象有重大作用。
1963年,随着降水进入海洋表层的氚元素最多。科学家们一直在追踪这些氚是如何向深海扩展的。研究发现,北大西洋格陵兰海的表层水在冬天冷却下沉,开始转变为深层水。
20世纪70年代进行的地球化学截面观测(GEOSECS)计划的测量数据表明,氚元素在北纬50度以北海域呈斜面状进入海底附近。
1981年又进行了一次观测。当时氚元素已经南下至北纬40度附近。可以推测深层水已经形成并且南下。当时也观测到造成臭氧空洞的氟利昂也少量溶入了海中,有的还侵入到南极洲附近的深层水中。
这些化学物质虽然是人工释放进海洋中的,却可以作为记号来追踪海水的运动,被称为“化学追踪剂”。这种方法的优点是可以观察到具体的侵入情况。
以前科学家用浮标、浮筒或颜料来研究海水运动。现在的“化学追踪法”将研究的范围扩大到了全世界。由于这些追踪剂是几十年前才投入自然环境的,在中低纬度由于温度跳跃层的存在阻碍了向下的侵入,所以在这些地方只停留在海水表层。
现在科学家又用六氟化硫(无害,少量就可被检测到)投入温度跳跃层来检测这一层的垂直扩散速度。结果发现温度跳跃层的密度非常稳定,在垂直方向几乎不发生混合。
现在“化学追踪”正在全球范围进行,相信不久的将来我们便可以解开深层海水循环之谜了。
深层水的年龄
海洋的一次大循环到底需要多少时间?
前面已经说明过,根据海水中的氧气浓度的减少或营养素浓度的增加可以推测深层水的流向。但是如同鲸鱼在做剧烈运动时吸入量就会增加一样,海水中的氧气消耗速度也不是一定的。
根据14C测定年龄
例如海雪大量存在的海域中的氧气会因有机物的分解而快速消耗。因此氧气浓度的减少量和所花费的时间是无直接联系的,有什么方法能够进行正确的测定呢?
幸好科学家发现了由宇宙射线生成的放射性物质14C,它的半衰期为5,730年,所以科学家可以以它作为“时钟”来测定深层水的年龄。
我们一定也经常听到在地质学和考古学中常用的放射性碳元素年龄测定这一名词。
在古代的遗迹中发现了古代人使用的木片。树木是靠光合作用吸收大气中的二氧化碳(其中含有14C)合成有机物而生长的,所以和当时的大气含有同样比例的14C。
在核试验前的古代大气中的14C浓度应该是稳定的,所以木片中最初的14C浓度也便可知了。只要测出出土时木片样本的14C浓度就可以计算出它至今的年龄。如果减少了50%,则表明它已经5,730岁了。
这个原理同样也适用于海水。海水在表层时由于和大气的气体交换,溶解了二氧化碳,所以应该含有和大气相似的14C浓度。随着时间的推移,由于14C的衰变作用,14C将减少。根据所减少的量就可以计算出它的年龄。
事实上,北太平洋深层海水中的14C浓度比大气低24%,而北纬40°以北的北大西洋表层水比大气低7%左右,两者的年龄差约为1,670岁。印度洋北部的深层水为1,200岁,南极海为820岁(如上图)。
海水下沉为深海水后的年代当然海水的情况和考古学的木片样本不同,海水在下沉后并非就不再进行碳元素的交换了。
海水可能会和不同放射性碳元素浓度的海水混合,可能会因为有机物的分解或碳酸钙的溶解增加新的无机碳元素量。这些对年龄测定的影响有多大,现在还是个未知数。
所以前面推测的年龄值只是一个“估计值”,大致上深层海水的平均年龄在1,000岁左右,海洋的一次大循环大概需要2,000年左右。
由于宇宙射线的作用而生成的39Ar也可以代替14C进行年龄测定。
39Ar的半衰期为270年,溶于水之后几乎不参与任何化学反应,是理想的海洋循环追踪剂。但是它的存在量太小,在现在的测定技术下需要大量的海水,所以未得到广泛利用。估计在将来使用高敏感度的分析法后它就会成为研究的主力军。
锰块之谜
锰块是以铁和锰的氧化物为主要成分的化学沉淀物。
锰块的形状大小各异,一般直径为2厘米到拳头大小,呈卵状或球状,在深海底广泛分布。
19世纪的“挑战者”号早已发现锰块,并有详细的记载。
锰块中的镍、铜、钴的浓度也很高,可作为矿物资源。但是这种锰块的形成和分布存在着许多谜点。
在进行放射年龄测定时发现,这些锰块在100万年前只有几毫米,并且成长速度非常缓慢。
更奇怪的是这种锰块几乎都存在于海底沉积物上面,没有被埋没。海底沉积物的沉积速度虽然很慢,1,000年才几毫米,但是考虑到海洋的年龄,没有理由锰块不被埋没在堆积物中。
对此现象有各种说法。例如海底的鱼或者急流推着锰块不停地滚动,或者沉积物的粒子之间相互作用,将锰块不停地上挤等说法,但是都缺乏说服力。
那么,这些锰和铁到底从哪里来?
据推测,可能是被沉积物还原的二价铁离子和锰离子溶解在沉积物间隙中的水中并被带入海水中再次被氧化成三氧化二铁和氧化锰,形成沉淀而积于海底。
锰块之所以那么受注目,主要还在于它的矿产价值。锰块有望成为镍、铜、铬等贵金属的采矿对象。事实上在北太平洋的夏威夷东南海域已经开始了采矿试验,各国在各自划定的区域内进行技术研究和环境影响试验。
在商业化过程中最大的问题是,如何降低从深海5,000米处采集锰块装上船只并精炼为成品过程中的成本问题。
另外,最近比较受关注的是存在于海岭或海底山脉等热水喷出处在海底岩石上形成层状沉积物的“锰壳”。
锰壳含有高品位的铬和金,并且比深海的锰块易采集(水深2,000~3,000米)。
人类的活动将各种物质带进海洋。从20世纪60年代开始人们开始关心这些物质对人类有无明显的恶劣影响,并在世界范围展开研究。
特别是日本,曾经把工业化放在第一位,而导致陆地沿岸的海洋污染,代表性的水银中毒事件便是一例。
后来,发达国家对有害物质的抛弃作了严格的规定,这些国家的沿海环境逐渐改善。但是发展中国家的污染仍然很严重。
油轮原油泄漏、海湾战争的石油污染、俄罗斯的核潜艇及核废料丢弃在海洋中等一系列问题都提醒我们要注意防止海洋的污染。在尼泊尔的农村,一个空罐头盒、一个旧塑料瓶都是非常重要的日常用品,很少有被丢弃的。
然而发达国家的垃圾废品却异常多。要解决这个问题,首先要停止不必要物品的生产,然后要加强对废品的再循环利用。这两点非常重要。当然即使做到这两点,垃圾也不会因此而消失。
新闻、报纸一直在报道,东京湾垃圾处理场的处理能力已经饱和。将来怎么解决呢?抛弃到外海吗?
也许很少有人知道,其实工业废料和海湾淤渣在一定允许范围内是可以抛弃进大海的。
东京湾的沉积物的重金属浓度是由于工业废水排放引起的重大问题,20世纪70年代达到顶峰后开始下降。低放射性的废料也被投入深层海底,从而导致全球舆论哗然。事实上日本不仅在填海造地,也把海洋作为一个低风险的垃圾处理场。
问题在于,海洋究竟有多强的自我净化能力,投下的垃圾对海洋的生物以及人类有没有坏的影响?在国际上一般遵守《伦敦公约》的规定,制定了不能抛弃入海洋或者需要特别许可的物质分类,以此来防止海洋污染。
当然,这个条约的内容也会根据科学研究的发展而经常修改。人类必须在不破坏海洋环境的前提下有效地利用海洋资源。如果只是教条的认为“任何人为向海洋抛弃物品的行为都会破坏海洋的环境”,那么,连鱼也不能吃了。
近期为了缓解温室化效应,有人设计在发电厂回收二氧化碳并将其投入大海中。这时围绕着这个计划所带来的环境问题也由于现在对海洋的认识还不够充分,所以对海洋的影响仍无一定论。
海洋科学的发展,一定要为类似的问题提供客观的判断标准。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源