必知的航天科技-太空探索
首页 上一章 目录 下一章 书架
    第一个航天英雄万户

    中国是火药的发明国。14世纪末,我国一个叫万户的人,根据火药燃烧后能产生巨大推力的原理,提出了运用火箭把人送上天的设想,并且勇敢地亲自做试验。他把47支火箭捆绑在椅子腿上,自己坐在椅子上,手拿两个大风筝,让人把火箭点燃,试图借助火箭产生的推力和风筝的升力飞上天去。只听得一声巨响,万户和椅子都被炸得粉碎。万户的梦想虽未实现,但他试图飞上天的勇敢探索精神深深地感动了后人。为了纪念这位航天先驱,前苏联宇航科学院把月球背面的一座环形山命名为“万户山。”

    “神舟五号”载人飞船发射成功

    2003年10月15日9时整,“神舟五号”载人飞船发射成功,将中国第一名航天员杨利伟送上太空。

    飞船经过绕地球14圈以后,于16日6点23分在内蒙古阿木古郎草原安全着陆,航天员自主走出返回舱,状态良好。

    这次航天飞行任务的顺利完成,标志着我国突破和掌握了载人航天的基本技术,完成和实现了中国载人航天工程第一步的计划和目标,使中国成为世界上第三个,也是发展中国家第一个能够独立开展载人活动的国家!

    “嫦娥”探月计划

    2003年,中国启动名为“嫦娥”工程的探月计划。

    “嫦娥”工程将分为“绕”“落”“回”三个阶段实施。“绕”即发射月球探测卫星;“落”是将月球探测器发射致月球表面;“回”即返回,是月球探测器发射至月球表面软着陆,采集月球样品再返回地球。

    实现“嫦娥”工程三个阶段的目标估计需要十多年时间,2006年即可实现第一阶段目标。或许用不了太长时间,嫦娥就会见到故乡人了。

    “水星”计划

    “水星”计划是美国的第一个载人航天计划。

    “水星”飞船由密封座舱、逃逸系统、天线容器、回收部件、反推火箭与分离火箭、防热层等部分组成。先后共发射25艘,其中载猴子和猩猩飞行各2艘,载假人飞行4艘,载人亚轨道飞行2艘、载人轨道飞行4艘,其余是在计划早期用于考核飞船和火箭。

    早在1959年8月21日,美国就开始用“小兵”火箭发射“水星”飞船外壳的试验,但由于“小兵”火箭在技术上还没有完全过关,成功率很低。不得不请出技术上相对成熟的“红石”导弹和“宇宙神”洲际导弹,经改装后作为运载工具,但仍没有成功。

    1961年7月21日,航天员弗吉尔·格里索姆乘“水星4”号飞船作一次亚轨道飞行,太空飞行时间16分钟。

    在经过载假人和载动物黑猩猩的几次轨道飞行成功后,1962年2月20日,大推力的“宇宙神”火箭终于将“水星6”号飞船送入太空,约翰·格伦成为美国第一个绕地球飞行的船天员,在轨道上飞行4小时55分钟。

    水星科学考察

    1973年11月3日,“水星10号”探测器从地球升空,开始了飞往水星的旅程。1974年3月29日,它抵达了水星,在离水星表面705公里处通过,随后又在当年的9月21日和1975年3月6日两次通过水星。这次考察总共探测了45%的水星表面,传回了2700多幅水星照片。自那以后,对水星的空间探索沉寂了将近20年。

    但是对水星的研究并没有停止,长期的研究再次触发了科学家对水星进行考察的兴趣。上世纪末,美国开始筹划“信使号”飞船探测计划。“信使号”定于2004年3月或5月的中下旬发射,根据预定的飞行轨道,它将在2004年6月及2006年3月两次飞越金星,在对金星进行考察后于2007年7月27日从水星附近飞过,而后又将在2008年4月11日第二次通过水星,最后于2009年4月6日开始进入环绕水星的轨道。这个轨道的最高点为15000公里,最低点200公里。轨道与水星赤道成80度,最低点在北纬60度。“信使号”将携带大量科学仪器,届时将对水星的表面、内部、大气以及附近的空间环境进行综合考察,送回更多关于水星的信息。

    “上升”号计划

    “上升”号计划是前苏联“东方”号计划的后续载人航天计划。

    在计划实施过程中,前苏联领导人赫鲁晓夫得知美国准备搞载3人的航天飞行计划,便立即要求抢先发射载3人的飞船。

    1964年10月12日,“上升1”号首先载着弗·米·科马罗夫、康·彼·费奥克蒂托夫和鲍·叶戈罗夫3名航天员进入轨道,绕地球飞行16圈,历时24小时17分。争得了载多人太空飞行的“第一”。

    这时,苏联又得知美国在“双子星座”计划中安排有太空行走的内容。为了抢得这个“第一”,科罗廖夫机灵应对,在“上升”型飞船的壁上开一个口,安装一个气闸室,供航天员进行太空行走时,出入座舱之用。

    1965年3月18日,“上升2”号飞船载着阿·阿·列昂诺夫和帕·伊·别到亚耶夫进入太空。在绕地球飞行的第二圈时,列昂诺夫系着保险绳,走出舱座,破天荒地在空旷的太空中游荡了10分钟,但在进入座舱时却花了12分多钟,险些进不了舱。

    “上升2”号在太空飞行26小时,于3月19日返回地面,整个“上升”号计划结束。4天后,美国载2人的飞船发射成功,两个多月后,美国航天员进行了太空行走。

    “阿波罗”飞船

    “阿波罗”飞船由指挥舱、服务舱和登月舱组成。发射时从上至下以指挥舱——服务舱——登月舱的次序与“土星5”号火箭的第3级相连,在指挥舱的上面还有发射应急逃逸塔。

    “土星5”号火箭载着“阿波罗”飞船从肯尼迪航天中心升空,达到61千米高空时,第一级火箭分离,第二级火箭工作。在达到185千米高度时,第二级火箭分离,第三级火箭工作约两分钟,将飞船送入绕地球飞行的轨道。在到达发射场上空前,第三级火箭再次点火工作约5分钟,将飞船推出绕地球飞行的轨道,飞向月球。

    进入奔月轨道后,第三级火箭上保护登月舱的外罩分成4瓣分离。然后飞船的指挥舱与服务舱一起与登月舱暂时分离,并调转180度,让服务舱在前,指挥舱与登月舱对接。最后,登月舱与第三级火箭脱离连接。整个飞船以服务舱——指挥舱——登月舱的次序飞向月球。

    返回时,登月舱上半段与指挥舱对接,两名登月航天员进入指挥舱后,抛弃登月舱上半段,进入返回地球的航程。接近地球后,服务舱与指挥舱分离,指挥舱载着3名航天员再入地球大气层,最后打开降落伞,溅落在夏威夷附近的太平洋上。

    从1969年7月到1972年12月,除“阿波罗13”号登月失败外,先后有6艘“阿波罗”飞船送12人登上月球。

    火星上的“人造”洞

    2004年2月6日美国宇航局的“勇气”号火星车用机械臂上的打钻机在火星上的一块岩石上打了一个洞。科学家说,“勇气”号创造了历史,这是人类首次在火星表面上留下“人造”洞。

    “勇气”号花费3个小时用机械臂上的打钻机钻入一块名为“阿迪朗达克”的岩石内部进行探测,它钻的这个洞深2.7毫米,宽45毫米,科学家们可以通过这个洞分析火星过去的地质构造。接下来,它将利用机械臂上的显微成像仪拍摄岩石的显微照片。

    在火星另一个半球探测的“机遇”号火星车6日向着陆点附近的一处外露岩床行进了大约2米。抵达后,它将在那儿停留数天,探测岩石中赤铁矿的含量,并再传回土壤的显微照片。

    火星上有生命的痕迹

    科学家现在知道了在火星什么地方寻找生命,这一观点是俄罗斯科学院航天研究所实验室主任伊戈尔·米特罗法诺夫在接受俄塔社记者采访时发表的。他强调,从美国“机遇”号火星车传送回地球的资料能对寻找生命的区域作出判断,俄罗斯科学家不怀疑,地球人能在火星上发现原始生命形式的痕迹,但是我们过去不能确切知道在哪里去寻找它们。

    米特罗法诺夫指出,火星车在火星地表发现含有所谓与水化合的矿物,这证明火星某个时期像地球一样曾存在过生命。他认为,这一发现能重新“瞄准”在“机遇”号火星车曾经研究过的火星地区寻找这类矿物和古生命踪迹的实验。

    此前,美国宇航局宣布,火星车发现了火星上过去曾存在大量水的证据。

    火星的火山

    现正在围绕火星运转的欧洲“火星快车”探测器拍摄到火星奥林匹克山顶一幅高质量彩色照片,该山是太阳系中最高的火山。从照片中可以看到复杂的火山口,火山口深3千米,其横截面约为80千米。火山拥有几个塌陷处,彼此又部分重叠,都是在火山各次喷发时形成的。看来,这火山喷发是在很早很早以前发生的,因为那时在火星上曾经历火山活动时期。

    第一位火星移民

    来自地球上的第一位火星移民也许不是人类,而是植物。美国宇航局打算在2007年发射“侦察员”飞船,把带有水母发光基因的拟南芥送到火星上去。

    之所以选择拟南芥做试验,是因为它有三个优点:它的株身较矮,可放在较小的暖房里;它的生命周期不长,只有六个星期;它的全部基因组已经破译。(基于同样理由,国际空间站的“独立试验”也用它来研究植物对微重力的反应。)火星定居不是梦

    在过去100年里,有太多东西改变了我们的生活,在未来100年中,我们的生活无疑会改变更多。人类实现了登月的梦想后,更大的目标就是载人火星飞行,踏上火星之时,更长远的计划是改造火星环境,使之成为适合人类居住的第二个地球。科学家们坚信,人类最快可以在10年内踏上火星。

    能在火星上种植树木是火星变得适合人类居住最重要的条件,这样在以后的数万年间,大量的树木就可以为火星大气提供足够的氧气,使登上火星的人类可以自由地呼吸。但就火星目前的情况,地球上的微生物在火星上仍无法得到足够的氮维持生命,因为氮元素是植物进行光合作用的主要元素,对于植物的生长具有至关重要的作用。

    科研人员认识到,在火星解冻的过程中可以将地球上的微生物及植物带上火星,预计火星表面将在未来100年之内解冻,整个火星星体解冻的时间可能需要大约700年。

    火星与地球的相似之处

    关于火星人、火星生命等激动人心的问题已经争论了近一个世纪。因为自从望远镜发明以后,由于多种特性与地球相似,火星一直被誉为第二个地球。

    火星的运行确实与地球有着相似之处,它绕太阳一圈的周期为687天,而它的自转周期仅比地球长41分,更令人惊讶的是它的自转轴倾角也只比地球的大32分。因此,火星上不仅有类似地球上的季节之分,还能明显区分出“五带”,即热带、南北温带和寒带。火星的平均温度与地球相差也不大,赤道地区的昼夜温度在20度到-80度之间,而最寒冷的极区的温度变化于-70度到-140度。此外,火星上还有定量的大气、白皑皑的极冠,且随季节变化大小范围有明显的变化。由此可见,当人类着手为自己寻找另一个理想家园时,对火星寄予深切希望是顺理成章的事。

    火星地貌

    火星表面十分荒凉,从望远镜中看到的明亮呈橘黄色的区域是它的“大陆”,那里到处是黄、红色的沙丘和怪石,火星的南、北半球有很明显的区别,北半球比较平坦,间或有些死火山,平均比南半球低4千米,而南半球则有比较多的大大小小的环形山,山边缘的坡度也比较平缓,脊棱也受过某种“风化”作用。从大小比例来看,火星上的环形山除了起源于陨星外,还有不少是火山活动的结果。100多年前所谓“火星运河”其实就是这些环形山及其阴影造成的错觉。

    火星上确有奇特的“河床”,这些干涸的河床纵横交错,似乎主流和支流相连,达几千条之多,多数人认为是由于过去火星在早期的活动时代,火山喷出来的巨大熔岩造成的,但也有人认为不能排除这可能是真的河流遗迹。尽管火星上目前没有液态水,但在火星形成早期,可能有较高的温度,完全有可能形成大量的液态水,造成真正的大江巨川。

    筹建火星空间站

    美国航宇局(NASA)近日制定的一项探索火星的长期计划显示,NASA将在未来10年间完成6次重大的火星探索行动,其间,意大利和法国的航空部门也将参与这些行动。

    与此同时,俄罗期“能源”火箭航天公司专家计划,在火星轨道上建造一座便于人类长期研究开发火星的空间站,并打算在条件成熟时吸引多国参与该计划的实施。

    专家们已设计出了火星空间站的原型,这座未来的空间站重约400吨,由多个舱体对接而成,可容纳10名宇航员长期工作。空间站舱体由前向后依次为:气密过度舱、气压舱、科研舱、两个居住舱、两个过度舱、健身医疗舱和联动机件舱。

    空间站各组件将由超大推力“能源”型火箭分批送入地球轨道,并在那里完成组装。再由空间站上的数百个蜂窝状小型电动喷气发动机产生动力,最终使空间站远征火星。预计,空间站建设工期长达10年,所需资金约为100亿美元。

    太空医学研究

    目前,太空医学研究的内容包括细胞组织工程、器官移植、再生医学和病理研究。太空环境为医学研究提供了难得的条件。比如,一种寄生在草莓中的环孢寄生虫常常引起严重的胃肠道疾病,也是造成新生儿脱水死亡的重要原因之一,在地面环境中还没有谁能在实验室的培养基中培养出这种寄生虫。最近,研究人员在太空中采用新方法培养出了这种寄生虫,为防治该种疾病提供了新线索。

    太空中病毒生长迅速,能为研究人员提供一个全面观察艾滋病病毒的机会。近年来,美国研究人员已经利用空间站的生物反应器培养出了艾滋病病毒。

    无论是寄生虫还是微生物,在太空的失重环境中都能快速生长,这不仅为开发新药提供了条件,而且为认识疾病病理创造了条件。比如,美国研究人员把癌细胞放到太空中进行研究,结果发现结肠癌细胞的直径居然可以长到10毫米大,其体积是地面实验室培养出来的结肠癌细胞的30倍。这项研究证明失重环境有利于组织和细胞的生长,这不仅为观察肿瘤生长提供了条件,而且为制造抑制肿瘤生长的药物和治疗癌症提供了线索。

    太空育种

    在太空生物技术中,目前研究得最多的是太空育种。美国研究人员于2002年把大豆带到太空,获得了诱导突变的良种,现在正在进一步分析其中的蛋白质、脂肪、碳水化合物和其他成分的含量。如果能获得成功,这将是继转基因大豆后的另一种培育育种大豆的方法。

    我国的太空育种从1987年开始,现在通过国家品种审定的已经有18个。太空育种的机理是,太空中具有失重、高真空、宇宙高能粒子辐射、宇宙磁场的综合作用,能使植物DNA链条发生断裂或重组,基因组发生易位,产生新的突变体。当然,这种突变是随机的,可以像选种一样挑选那些产生了较好变异的品种。现在,我国经过太空育种的作物有50多个品种,其中有的已经大面积推广。

    太空生物材料

    人一到30岁以后,骨质就开始丢失,严重的患者会出现骨质疏松症。据统计,我国现有40岁以上人群骨质疏松症的发病率为16.1%,而60岁以上老人的发病率则为22.6%,80岁以上老人的发病率为50%。

    那么,有没有办法延缓骨质的丢失过程呢?研究人员利用太空生物医学的研究表明,在失重环境下,导致骨质丢失更为迅速,因此生物在太空中丢失骨质的原理特别典型。研究人员正在利用太空生命科学作为实验基础,研制治疗骨质疏松症的药物。

    人衰老的进程由骨质疏松表现的另一个外在症状是髋骨骨折。髋骨骨折后的治疗一般是重新植入人工骨骼,但是植入物一般只能维持十年,然后又得重新植入,不仅增加病人的痛苦,而且经济负担也十分沉重。而太空研究的启示是,使用类似于自然骨骼的陶瓷材料作为人造骨就是一种新的选择。

    太空分子产品

    科学家正在利用太空环境研究生物分子结构,以生产新的药物和蛋白质。研究人员发现,在太空失重条件下蛋白质晶体可以生长得比在地球上更大,结构更完整,从而可以进行更方便的分析。通过对这些蛋白质晶体的分析,能更深入地了解蛋白质的秘密,比如其结构和功能的关系,从而进一步了解蛋白质、酶和一些病毒在生命与健康中的作用。

    研究人员利用太空环境进行生物分子研究所取得的一些成就主要在蛋白质晶体生长方面。在航天飞机和空间站中,利用失重控制晶体生长,已经生产出了较大的蛋白质晶体。比如,溶菌酶是细胞内产生的物质,对杀灭病菌和保护健康是非常有用的,研究员已经在太空中生产出了非常大的溶菌酶晶体,这对研究其结构和功能非常有利。又比如,血浆白蛋白是生物循环系统和血液中最常见的蛋白质,对于提高免疫力和杀灭病原体具有重要作用。现在,白蛋自己在太空失重条件下合成出来了,这对白蛋白的药理并制造出新的药物有指导作用。

    空间站的生物反应器

    研究人员利用空间站上的生物反应器中生长的组织样本可以设计新的药物。比如,由于微生物在太空中可以快速生长,并且能产生较大的变异,因此把微生物样本送上太空,它们的变异率是地面上的几万倍甚至几十万倍。这些变异使微生物具有治疗某些病症的功能,对其培养后就有可能制成新的药物。可以在太空培养的微生物中制取一种或多种疫苗,还可以观察在太空中培养的微生物对其他物质的敏感程度,以设计和生产新的抗生素。

    庆大霉素是目前广泛用于临床的广谱抗生素,但是,生产庆大霉素的菌种的生产能力比较低。而太空育种则可以大幅度地提高庆大霉素的产量。生产庆大霉素的细菌的孢壁厚,而且化学组成特殊,对一般的理化诱变因素有一定的耐受性。利用太空失重和生长快的条件等,就可以使生产庆大霉素的细菌发生基因突发,然后再选择那些发生过基因突变和生长快速的菌种,可以提高庆大霉素的生产能力。

    此外,将不同的微生物送入空间站,可以更好地了解太空条件对微生物生命活动影响的本质,可以观察重力变化导致菌体形成的变化,分析酶活力的水平和重组质粒的稳定性,观察菌株产生抗生素、有机溶剂的能力及其他新的代谢变化情况,筛选优于原种性状的新菌株等等。

    宇航员的选拔和训练

    宇航员的选拔和训练极为严格。培养一名合格的宇航员,需要经过多方面的培训。宇航员的训练主要包括以下3个方面。

    首先,因为宇航员在太空中遇到的情况与地球上有很大差别,因此,每个预备宇航员必须掌握与此有关的各方面的基础知识。由于宇航员是要借助火箭和各类载人航天器飞向太空的,所以宇航员还必须熟悉火箭、各种航天器的设计原理、结构、导航控制、通讯、座舱中设备和各种仪表的性能,以及简单的检修技术。因此航天理论和基础知识的训练是至关重要的。

    有关航天特殊技能的训练,主要是模拟航天飞行的真实环境和过程,使宇航员通过训练,能够熟练地掌握操作技能,应付各种可能出现的问题。

    此外,航天工作十分艰苦,要做一个宇航员,必须具有良好的身体素质,因此还要进行增强体质的体育训练。

    舱外生命保障系统

    宇航员在太空中有时是要到舱外执行任务的。比如,人造卫星的修复回收,空间站的组建安装,以至在天体表面探险,都要靠宇航员的舱外活动。而要进行舱外活动,首先要保证宇航员的生命安全。

    人类最早的舱外生命保障系统是一根长18米的管道,一头与航天器相连,通过它将氧气和必要的压力输入宇航员的航天服内,但限制了宇航员的活动空间,也容易因为缠绕而造成险情。而最新的生命保障系统与航天服配套并连成一体,保证它能安全独立于航天器。它的总重量可达118千克,储水4.2千克,储氧0.55千克,可连续工作7小时。这是一个能自给自足的封闭式小天地,能向宇航员提供冷却净化了的新鲜空气,并带走呼出的二氧化碳、有害气体和部分废热。它的无线电通讯和遥测系统,能随时保持宇航员与地面中心的通讯联系,并传输宇航员的各种生理参数和作业情况。

    舱外减压病的预防

    在太空中,宇航员如果要到航天器外的太空中去执行任务,一定要在出舱前先呼吸3小时纯氧,你知道这是为什么吗?原来,这是避免宇航员进入太空后出现减压病的一种预防措施。那么,什么是减压病为什么吸氧能防止减压病呢?

    我们知道,大气对人体是有压力的,但我们平时在地面并没有什么感觉,这是因为人体内部产生的内压与大气压平衡的缘故。如果外界压力一旦减小,人体组织和体液中溶解的氮气就会转变为游离的气体,在血管内形成气泡堵塞血管,在血管外压迫局部组织,使人出现四肢疼痛、面色苍白、出汗虚脱,呼吸困难、听觉失灵等情况,这就是减压病。

    因目前技术水平所限,宇航员出舱时穿的宇航服只能达到大气压的1/3左右,因此航天员在出舱前,都要先吸足纯氧,使体内组织和体液中的氮气尽可能排出,以避免在舱外发生减压病。

    宇航员进入太空的步骤

    在太空中,宇航员有时需要离开座舱,进入太空进行工作。这可不像我们平时走出房间那么容易。因为在各种航天器中,都要保持和地球上基本一样的温度和大气压力。只有这样,宇航员才能在太空舱内不需穿戴任何设备就能自由呼吸、生活。但是,即使宇航员穿了特制的宇航服,也是不能直接进入太空的。如果像我们平时从屋子出来那样,走向太空,就是门关得再快,舱里的空气也会跑光的。

    为此,科学家研制了一种气闸舱。气闸舱两边各有一道门,宇航员穿好航天服后,先从座舱进气闸舱,随后关上气闸舱与座舱之间的第一道门,使座舱与气闸舱完全隔开,以保持航天器的密封状态。然后,宇航员再给气闸舱减压,当它达到与舱外太空一样的空间压力后,再把气闸舱的第二道门打开,宇航员便可以进入太空了。当宇航员返回座舱时,只要执行相反的程序就可以了。

    排除航天器的故障

    在探索宇宙的载人航天飞行中,尽管航天专家们事先尽了最大努力来预测和防止航天中可能出现的种种问题,也仍旧难免会出现意外事故。那么,宇航员是怎样应对这种局面的呢?

    航天器发生一些小故障时,上面的自动化救生系统会在电子计算机的指令下,更换有关程序,自动采取应急措施。

    对于一些比较大的问题,就需要宇航员亲自动手了。宇航员在上天之前都接受过严格训练,精通多门学科,判明故障原因后,他们可以启动应急备用设备,抢修故障,化险为夷。此外,地面救生系统是宇航员的坚强后盾。一旦太空中出现紧急状态时,地面立即组成专家小组帮助宇航员寻找故障根源并设法排除。地面模拟设备可以复现航天器上的种种状况,以慢动作再现航天器上产生故障的经过。专家们经过会诊后,制定出抢险的最佳方案,然后通过电视遥控,指挥宇航员排除各类故障。

    宇航员在空间站不能住太长时间

    宇航员在空间站内最多只能住1年左右,原因是宇航员忍受不了太空中的寂寞和孤独。一个长期不与他人交往的人,会因孤独产生焦虑,焦虑过度会导致精神失常,因此宇航员在空间站住的时间不能太长。

    进入太空第一人

    1961年4月11日清晨,尤里·加加林来到拜科努尔发射场。总设计师科罗廖夫在那儿与他会面,并一同登上发射台,站在“东方”号飞船旁边。飞船由球形座舱和圆柱形设备舱组成,第二天上午9时,透过火箭的轰鸣声,飞船顺利进入预定轨道。

    在绕地球一圈的108分钟的飞行中,它的情况还算顺利。在返回时却遇到了麻烦。制动火箭点火,飞船进入返回轨道。但在制动火箭关机后,飞船旋转起来,加加林感到是在作芭蕾舞的旋转动作,有点头晕目眩。接下来的程序应是设备舱与密封座舱分离,需时约10~20秒。但由于一束导线没有断开,设备舱并没有完全离开密封座舱。冷静的加加林听其自然,等待着进入稠密大气层时导线被烧断,所以他仍向地面发出“BH4”——“一切正常”的信号。万幸,10分钟后设备舱完全分离了。

    飞船进入稠密大气层时,外壳因气动加热而燃烧,巨大的过载也使加加林的眼前一阵发黑。好在按设计程序,在离地面7000米时,加加林连同座椅从密封座舱中弹出。

    10时55分,加加林降落在萨拉托州恩格斯区波德戈尔诺耶村附近的一个防空导弹部队的营地上。

    登月处女航

    1969年1月,迈克尔·科林斯、尼尔·阿姆斯特朗、埃德温·奥尔德林从50名航天员中被挑选出来,执行第一次登月飞行任务。

    1969年7月16日上午12时32分,“阿波罗11”号飞船终于出发了。7月19日正午,飞船应开始绕月球飞行,这就需要启动制动发动机减速,以便飞船被月球引力抓住。要是制动发动机启动不起来,飞船只能从月球背后打个转,然后飞回地球。要是发动时间过长,飞船就会撞在月面上。

    这一关闯过去了。在绕月飞行第13圈时,登月舱与指挥舱分离,从15000米上空以弧形轨迹降落到月面上。

    1969年7月20日22时17分,登月舱降落在月面上。经几小时的观察等待,阿姆斯特朗于21日2时56分走出座舱,在扶梯的最下一级又站了数分钟后,伸出左脚,在月面上印下了人类的第一个脚印,并说出了那句久藏心底的话:“对一个人来说这是一小步,但对人类来说,是一次飞跃”。

    18分钟后,奥尔德林也踏上了月面。

    在月面活动两小时后,两名航天员乘登月舱上半段上升,与指挥舱对接,3名航天员会合,一起飞回地球。

    在飞船上生活

    “神舟五号”上空间较小,航天员进舱后,便被固定在返回舱的座椅上,吃喝拉撒均在座奇上的生活保障系统完成。座椅后背靠着的地方向下凹,人们称它为椅盆。舱内的马桶是特制的,它是靠风机来抽吸,先把其中的水分抽掉,再把干的部分,自动用塑料袋密封起来。宇航员吃的航天食品残渣少、热能高,都为一口吃的食品。这是为了减少和控制舱内的食物渣粒,以防止舱内污染。

    宇航员在太空是怎样洗澡的?

    在太空中,水不但不会像在地球上那样自动从喷头往外喷,而且喷出来以后还会到处飘。

    现在,科学家已经解决了这个问题。他们给水加定压力,逼着水向外喷,就像用高压喷雾器那样,并根据这个原理设计了一套专门的太空淋浴设备。这是一个圆筒,宇航员钻进筒内,拉上密封拉链、双脚伸进固定在筒底的一双特殊拖鞋内,就可以站得很稳,不至于飘起来。宇航员打开筒顶的莲蓬头,加了压力的热水就会喷出来。但是,水珠在筒内乱飞,很容易钻进宇航员鼻孔里,影响呼吸。所以,想洗澡的宇航员在打开莲蓬头之前,还要把呼吸器套在嘴和鼻子上,防止水珠进入气管。有了新的洗澡设备,宇航员就可以舒舒服服地在太空洗澡了。

    在太空中吃饭

    同在地球上一样,宇航员在太空中也要定期吃东西、喝水,还要呼吸、睡觉。不过,由于在太空中失去了地球的引力,一切物体都处于失重状态,吃饭可就不那么简单了。如果不固定食物的位置,食物就会飘浮在空间,想吃进嘴里是很困难的。为了避免麻烦,宇航员吃的东西都是膏状的,就像挤牙膏那样把食物挤进嘴里。在太空中,宇航员绝对不能吃粉末状的食物,因为粉末会飘浮在太空舱内,如果宇航员一不小心吸进肺里,就可能造成生命危险。

    从20世纪80年代起,随着航天科技的发展,各国开始更为重视宇航员的饮食问题,航天食品也大为改观。压缩食品、脱水食物、软包装罐头食品等纷纷问世。除此之外还设立了专门的简易食堂,不仅使食物更加科学、可口、营养,而且还增添了民族特色。这样,可以有效调节宇航员的情绪,使他们更好地进行工作。

    未来太空旅行者的食品

    在今后二三十年内的某个时候,人数不多的一批男女宇航员可望进行以火星为目的地的太空旅行,时间长达3年。人们因此提出的一个重要问题是,他们将在太空吃什么?

    在奔向火星的长达9000万英里的旅途中,美国航天局几乎肯定会向这六七名太空游客提供各种各样的食品,但食谱中无疑将包括以下食品:小块的胡桃巧克力、“种植园主”牌花生米、“奇宝”牌黄油饼干等。美国航天局负责向航天飞机和空间站提供食品的技术经理维基·克洛里斯说:“这些食品由于有一层包装,一旦融化,也不致被污染。”

    食而无味

    在航天初期,为不使食品粉末在密封座舱的失重环境中到处飘飞,损坏仪器设备和航天员的身体健康,食品都是糊状的。为了便于食用,还将糊状食品装在软管中,食用时像挤牙膏一样往嘴里挤。饮料同样装在软管中。这样,食品的香气被封住了,颜色看不见了,形状也谈不上了,进餐的情趣就单纯地为了填饱肚子。因此,航天员普遍反映没有食欲。

    后来有了压缩方块食品,打开复合塑料膜包装,掰起来放进嘴里食用;还有软包装罐藏食品,就是将蒸煮灭菌后的鸡、肉、鱼片用复合塑料薄膜代替金属罐包装。由于这种食品有一定粘性,打开后放在盘子上不会飘飞,可像地面上一样用刀叉进食。

    为了进一步增加进餐情趣,食品专家还研制了脱水食品,就是将食物经冷冻、升华干燥,使含水量减至3%左右,用复合膜包装后,在室温下微生物也难以生长繁殖。备餐者用针管往包里注水,食品可迅速恢复原有的形状和颜色,有的还需加热,然后放在盘中,让大家像地面上一样进餐。

    太空如厕

    失重作祟,不放过小事。

    失重将大小便这样的寻常事变得非常困难,以地面上的方式进行是绝对不行的,那样屎尿飘飞起来,怎样了得!

    载人航天初期,多为男航天员,可将尿液直接撒进尿袋中,然后封起来,大便时,将便袋口套在臀部上,再用胶布粘连。

    后来有了女航天员,怎么办?这确实使航天科技工作者费了一番脑筋。美国航宇局为在航天飞机上设置男女都适用的马桶,对妇女的小便过程进行了深入细微的研究。研制了男女共用的太空马桶。不过,男人就被女性化,需要蹲坐着小便了。

    大小便时,将臀部坐在便座上,马桶盖自动打开,然后将固定带系在腰间,以防止身体飘浮,为保险起见,在马桶的一边还设有把手。小便经导管被吸走,大便则经吸嘴由空气吸走。在把手的下方有一个控制杆,扭动控制杆可调节吸嘴的空气流量,部分粪便进入样品收集袋,经冷冻贮存,最后带回地面,供化验研究之用。屎尿的臭气经过滤器排除。

    便后起身,马桶盖自动封闭,里面形成真空,粪便迅速干燥,固体部份定期抛到舱外,让其进入大气层中烧毁,液体部份经再处理后作为非饮用水使用。

    太空刷牙洗脸

    在地面上,刷牙、剃须、洗脸等是易于反掌的小事,但在失重环境中,是无法像地面上一样刷牙的,那样,在牙刷的摆动中,水和牙膏泡沫会飞溅起来,污染空气,损坏仪器设备。同时,聚集在口鼻周围的牙膏泡沫还会影响呼吸。一般只能用洁牙纸或布擦牙,用牙线剔牙,或许还有其它更好的办法?如像嚼口香糖一样嚼带洁齿剂的胶体。

    在失重环境中剃须和理发更不随意,必须使用能自动收集须渣和头发的刀具,否则,须渣和头发弥漫空中,它的危害可比牙膏沫厉害得多,仅仅让它们粘在皮肤上,就奇痒难耐。

    在失重环境中洗脸也要受到限制,像地面上一样用毛巾沾水洗脸是不行的,那样会使水珠飘飞起来。一般只能用湿毛巾擦脸。

    太空睡眠

    睡眠在动物界无所不在,人的一生有1/3的时间花在睡眠上。

    人进入太空以后,航天医学专家就利用特有的失重条件,对睡眠进行深入的研究。

    由于失重,人的方向感丧失了,所以不管人体处于什么方向,是横还是竖,是正还是倒,都可以飘浮着在空中睡眠。

    但是,为了安全应该睡在有防火等功能的固定着的睡袋中,以免飞船加减速时碰伤,或被流动气流推动误碰仪器设备开关。

    为了提高睡眠质量,还应创造条件,产生与地面上睡眠相同的感受,如给睡袋充气,或用绷带绑紧,使它向人体施加一定的压力,以模拟地球重力;带上眼罩,不让航天器上快速交替的昼夜节奏影响睡眠,或者用灯光模拟地面上的昼夜节奏;带上耳塞,不让仪器设备和静电产生的噪声干扰睡眠,有条件时,应设专门的消音寝室。

    在失重环境中,会产生头、四肢等可转动的肢体与躯干分离的幻觉,以及“灵魂出窍”的幻觉,特别是在朦胧的睡眠中是这样。

    航天医学工作者除在技术层面上对失重环境中的睡眠进行研究外,也对睡眠的本质和作用进行研究。如美国曾对“天空实验室”上航天员的睡眠进行过测量,了解到失重环境中的睡眠,与以往的睡眠研究将睡眠划分的6个阶段相符,只是较深度的睡眠阶段(第三个阶段)较长,醒来的次数较少。

    现代睡眠研究认为,睡眠的过程是在慢波睡眠和快速眼部活动睡眠两种状态之间切换。对睡眠的作用是休息还是复原,是储存能量还是处理信息,则尚在争论之中。深入对失重环境中的睡眠进行研究,或许能为解开睡眠之谜提供线索。

    太空行走

    在地面上的行走,原本就是反抗地球重力的活动。失重虽使行走摆脱了地球重力的束缚,但同时也给行走带来了许多天大的困难。

    在飞船的密封座舱中,由于失重,人处于飘浮状态,只要用脚、手或身体的任何部位碰一下固定物体,借助反作用力可进行立体行走,到达空间的任何地方。同时,在密封座舱中有空气,划动四肢也可进行立体活动。这里的行走似乎非常随意和惬意。

    但在座舱以外的太空中行走,情况就大不一样了。这里不讲吸纯氧排氮、穿舱外活动航天服保障生命安全,仅讲行走本身的蹊跷。

    人走出飞船的密封座舱,仍以原有速度与飞船一起作轨道运动,即仍处于失重状态。由于太空为真空,也四处无着,无法靠人体自身的动作产生反作用力来达到行走的目的,只能靠喷气背包代步。但走得多快和走得多远,却无法作出主观上的判断。因在广阔无垠的太空,除同速前进的飞船外,没有什么物体可作参照物,既难以判断速度的快慢,也难以判断距离的远近。同时,对看到的物体,也难以判断它的大小,会将遥远的星星看成是近在咫尺的小石头,而如果眼前飘着一片小小的锡纸片,却可能看作是远在天边的屏障。如果并排前行的飞船在转动,长时间盯着它,更会使人晕头转向。

    在失重环境中行走,似乎应该是很轻松的,但实际上却非常累人。1988年12月,法国航天员让·克雷蒂安与苏联航天员亚·沃尔科夫走出“和平”号航天站密封座舱,在太空行走6小时,进舱时克雷蒂安连腿都挪不动了,在沃尔科夫帮助下才返回航天站。

    航天运动病

    航天运动病又叫太空适应综合症,是人进入太空后头几天经常出现的病症,症状与在地面上晕车、晕船和晕机等运动病差不多。如头晕、目眩、脸色苍白、出冷汗、腹部不适、恶心、呕吐,有的还出现唾液增多、嗜睡、头痛和其它神经系统症状。

    最早出现航天运动病症的,是1961年9月苏联第二名上天飞行的航天员格·季托夫。他在绕地球飞行第二圈时开始头晕、恶心和腹部不适。在做头部运动时,这些症状加重。在睡眠后症状减轻。返回地面后症状消失。

    据苏联对执行“上升”计划的5名航天员和执行“联盟”计划中的22名航天员的统计,患航天运动病的分别占40%和40.9%。美国在执行“阿波罗”登月计划时,对15名第一次飞行的航天员统计,患航天运动病的占40%。由此可见,大约有40%的航天员在首次太空飞行时会患航天运动病。有了一次太空飞行经历后,患航天运动病的比率会下降。如美国在“阿波罗”登月计划中,有过1次以上飞行经历的18名航天员,只有5人患航天运动病,占27.8%。但也有例外,如美国执行“水星”和“双子星座”计划的所有航天员,都没有患航天运动病,而在“天空实验室”计划中,有55%的航天员患航天运动病,可见航天运动病的复杂性。

    太空航行对容貌的影响

    在失重环境中,人的前庭器官功能发生紊乱,会导致航天运动病。

    其实,失重造成的后果远不止此。如心血管功能紊乱,会使人的面部大改容。

    在地面环境中,人的血液和其它液体,在心脏工作和地球重力作用下,总是向下或循环流动。在失重环境中,由于失去了重力,增加了血液和其它液体向上涌的趋势。据估算,有多达1~2升的血液涌向胸部和头部。

    这么多血液涌向胸部和头部,最直接的后果就是胸部发闷、面部充血浮肿和下肢缺血。

    失重对面部容貌的改变,使任何技术高超的化装师和整容医生都望尘莫及。在这里,失重真正是一面效果奇特的“哈哈镜”,它可使长脸变成圆脸,大眼睛变成小眼睛,额头上的深皱纹变浅,浅皱纹消失,尖下巴变圆,圆下巴变胖,双下巴变成单下巴。

    心脏的功能是将血液挤压到全身。由于血液丧失了重力,心脏无需像在地面上那样用力,就可驱动血液。用进废退,久而久之,心肌的张力就会降低。这对一直呆在失重环境中的人来说,是一种适应,但对返回地球的航天员来说,功能减退了的心血管系统,就会出现脸色苍白、出冷汗、血压降低和站立不稳等病症。

    失重对身体的危害

    失重还会使人体内的钙、磷、镁等无机盐的代谢功能紊乱,不仅吸收减少,而且骨质中原有的无机盐(主要是钙)丧失,从尿中排出。

    苏联曾用生物卫星对动物进行实验。在失重环境中生活18天的幼年大白鼠,骨骼的形成率明显地比地面上低。

    骨钙丧失主要发生在负重的跟骨、大腿骨等骨骼上。长期太空生活的航天员,跟骨的骨钙丧失量可达3.2%~8.3%。足见这是“用进废退”规律在起作用。

    骨质大量脱钙会变得疏松,返回地面后,轻微活动和用力就会造成骨折,特别是脊柱和长骨的骨折。

    用进废退规律还会在肌肉上发生,因为在失重环境中,产生力量的肌肉无用武之地了,它便会逐渐萎缩。

    生物卫星上的动物实验表明,在失重环境中生活20天的大白鼠,肌肉减少25%~38%。

    太空航行会使人体重减轻

    航天员从太空返回地面后,除个别人外,一般体重都会减少。如第一名进入太空飞行的航天员尤里·加加林,绕地球一圈,体重减少0.5千克。第二名航天员格·季托夫绕地球飞行17圈,体重减少1.8千克。

    体重减少,也是失重捣的鬼。

    由于失重,心血管功能紊乱,体液上涌,胸部和头部体液充盈,给感受器官一种虚假的信号:体液过量了。内分泌系统便自动地进行调节,将部分体液以尿排出体外。所以,初入太空的人,口渴感都减少,喝水量减少,而排尿量则增加。常此以往,导致体内的血容量和其它体液减少,使体重降低。

    前庭器官和心血管系统功能紊乱,使味觉失调,食欲不佳,进食量减少,造成热量供给与消耗量不平衡,也会导致体重减少。

    航天员的工作十分繁重、紧张,体力和脑力消耗都很大,每人每天应从饮食中吸收热值2800大卡以上,但由于失重捣鬼,一般都达不到这个量。入不敷出,只有消耗体内原有的脂肪和肌肉。与此同时,从尿中排出的氮量反而增加了。因此,导致航天员的体重普遍减少。

    太空疲劳症

    在失重环境中工作,似乎是很轻松的,其实非常累人,加之狭小环境、特殊照明、噪声和高低温的影响,使感觉功能、运动功能和中枢神经功能等都会降低,容易出现疲劳症状,降低工作效率,影响航天任务的完成。

    长期在孤独环境中超负荷地工作,不仅容易疲劳,而且容易发生心理应激。心理应激的主要表现是焦躁不安,情绪激动,睡眠中多梦,睡眠质量不高,甚至失睡、情绪低落、抑郁,常常产生错觉和幻觉,容易发火,迁怒于人,造成人际关系紧张。

    心理应激不仅影响工作,而且影响身体健康。所以航天科学工作者十分重视对心理应激的研究和处理。美国和苏联科学家曾对潜艇、南极考察站的工作人员,以及征集自愿者在航天模拟器上进行试验研究,寻找应付心理应激的方法。

    一般在长期太空生活中容易产生心理应激。特别在6、7个月以上的长期航天中时有发生。

    在接近返回地球时也易产生心理应激。

    在航天器发生重大事故危机时,也易发生心理应激。

    在听到重大的航天事故消息时,也会使正在飞行的航天员产生心理应激。

    太空病变治疗

    人在太空生病,是不可避免要发生的事情,失重给在太空治病带来许多麻烦。

    首先是诊断难,失重使胸部、头部充血,外貌发生变化,望诊、听诊难以准确。

    其次是治疗难。

    目前,对付失重和其它航天环境对航天员的一般影响,按照预定的健康保障措施执行,其中最重要的是加强体育锻炼;对偶尔发生的小病痛,地面医生通过遥测诊断后,指导航天员服用配备的药品也可解决;对急病、重病,则需送回地面治疗。

    将生病航天员送回地面,对急病患者来说,可能因丧失宝贵时间而危及生命,这是最大的问题。另一个问题是花费昂贵,一般需要2~3亿美元。因此,未来的解决办法,应在太空建医院,收治太空病人,在此之前,应视情况分别处理。1987年2月8日,苏联航天员亚·拉韦金和尤·罗曼年科乘“联盟TM2”号飞船进入“和平”号航天站工作,预计在太空生活1年,但拉韦金中途生病,地面指挥中心决定让他随另外两名短期飞行航天员一起,于这年7月30日乘原飞船返回地面治疗。后来,罗曼年科也感觉疲劳,但地面指挥中心没有让他返回地面,而是逐渐减少他的工作时间,由原来的8.5小时,逐渐减少为6.5、5.5、4.5小时,直到最后停止一切工作,使他创造了太空连续飞行326天的纪录。

    太空锻炼身体

    目前,对抗失重引起的生理变化的主要办法是加强体育锻炼。不过体育锻炼项目仍要受到失重和环境狭小的制约。单杠、双杠、举重、哑铃等靠反抗重力的项目达不达锻炼的效果;各种球类、游泳、滑雪、滑冰、越野、爬山等则受失重和场地的双重限制无法进行。目前,失重环境中的主要体育锻炼项目有如下一些。

    踩自行车练功器。锻炼者坐在固定的车架上,身体用安全带固定,以免飘浮,双腿套在弹力带上,克服弹力带的弹力蹬动车轮,所作的功由记录器记录下来。

    在微型跑道上跑步。锻炼者站在皮带式滚道上,双腿套上弹性带,以模拟人在地面上的体重,迈步时,一般需克服约490牛的弹性带拉力。

    拉弹簧拉力器。弹簧的弹力与重力无关。在失重环境中拉弹簧拉力器,与在地面上一样费力,可以达到锻炼的效果。一个弹簧拉力器一般有5根弹簧,每拉长0.3米,需用力107.8牛。

    作徒手体操。这是短期航天的主要体育锻炼项目,每天两次,每次30~60分钟。作体操时也要当心失重的捉弄。曾有航天员在做头部运动和甩动四肢时,感到头好像在脖子上360度地转动、四肢好像离开了躯体。

    穿负压裤子。这是一种准体育器材。穿上后将裤子中的空气抽掉,造成下身负压,促使体液流向下身。

    体育锻炼对抗失重影响的效果是非常明显的。如在太空生活326天的罗曼年科,虽在后期因疲劳而逐渐停止了工作,但仍依照专家制订的体育锻炼程序,每年坚持锻炼,使脉膊、血压始终保持正常,体重、骨钙和肌肉虽有稍许下降,但都在正常范围内。

    太空是漆黑的

    宇宙航行,美景无限。

    宇宙飞船启航,这时速度较慢,仍可定眼观看宇宙背景。嗬,好一幅美丽的画面。在太空真空中看星星,与在地球上看不同,由于没有大气层的影响,星星显示的都是它们本来的颜色,即由于它们的温度不同,而分别呈黄、红、蓝、白颜色。它们射出的光芒也没有大气折射造成的闪烁。没有了大气层的影响,宇宙背景呈深邃的黑色,使满天星斗像是在黑色天鹅绒上用一颗颗晶莹剔透的宝石镶嵌出的各种图案。飞船的运动,又使这一切具有动感,活像是在立体电影院中欣赏三维电影!

    欣赏之余,又会有这样的沉思浮现脑际:宇宙背景为什么是漆黑的?无限的宇宙有无限的恒星,即使每颗恒星的光是暗淡的,但无限多个暗淡的星光迭加起来,也会形成巨大的光芒。

    现代宇宙学解开了这个奥秘。首先,恒星不是永恒地燃烧的,原始恒星和死亡了的恒星不发光,发光的主序恒星有一定的寿命;其次,宇宙不是静止的,而是在不断地膨胀着;最后,也是最根本的,宇宙不是无限的,它有有限的年龄,有有限数量的恒星。因此,有限的宇宙和有限数目的恒星的光的迭加,也是有限的,而且是很微弱的,因为宇宙的不断膨胀降低了温度和光芒。

    宇宙飞船调节温差的方法

    宇宙飞船在太空中飞行时,由于始终受到太阳光的强烈照射,向阳的船体一侧温度会高达100℃以上,背阴的那边却要低到-200℃。宇宙中没有大气,不能用空调器,那么,宇宙飞船用什么方法来调节这么悬殊的温差呢?

    人们在生活中早就发现,表面是黑色的物体吸热本领强,表面是白色的物体吸热本领差。因此人们通常在夏天穿浅色衣服,冬天穿深色衣服。科学家们根据这个原理在飞船壳体外表面涂上一层浅蓝色或银白色的涂料。当阳光照在它上面时,可以防止温度剧烈升高;它背向太阳的时候,白色又可以减少向外辐射热的作用。在飞船壳体的内面,涂上一层黑漆,就像一层黑色的衣服里子。由于黑色吸热和放热的本领都大,可以使壳体内部温度的那一面放出热,使温度低的那一面吸收热,这样就使得舱体内的温度趋于均衡。加上宇航员穿上用特殊材料做的宇航服,就能在太空中进行科学实验了。

    航天器对接

    在浩瀚的宇宙太空,人类发射的航天器有时也需要互相对接,以便完成人员轮换、物资补给、设备维修等任务。不过,航天器的飞行速度很快,要使它们交会并对接,当然不是件容易的事。

    那么,航空器是怎样完成这一过程的呢?原来,航天科技人员是通过航天器轨道控制和航天器姿态控制实现对接的,其过程主要通过航天器控制系统完成。1965年12月15日,“双子星座”7号和“双子星座”6号在空间交会,当时它们在同一轨道上运行,又是同一速度,两个航天器仅相隔10厘米,这是世界上第一次实现航天器空间交会,为实现对接积累了经验。

    对接通常都是在宇航员的指挥和操纵下进行的。例如,“双子星座”号飞船和“阿金纳”号火箭对接时,两者相距仅300米左右,相对速度为1.5~3米/秒时,宇航员通过手控调整飞船完成对接,随后“阿金纳”号火箭的对接环与飞船的小头紧密配合,连成一个整体。

    人在太空中衰老得比地球快

    在太空飞行,尤其是超过月地空间的深空飞行,所遇到的首要问题就是长期失重。短期、近地空间的宇航活动会造成宇航员的“太空运动病”:头晕、出虚汗、流涎、恶心、呕吐等等。当然,这些症状通常都会在宇航员返回地面后逐渐消除。

    可是,有一个问题却很难解决,那就是太空飞行会引起骨质疏松。人类的骨骼长期以来为适应地球引力,产生了一种“反地球引力”的机能。而一旦进入失量的太空环境,这些能力消失殆尽,就会使肌肉开始萎缩,骨骼中的矿物质减少。

    过长的失重时间将造成骨骼的永久性损伤,极易导致骨折。另外,钙的大量流失也会加剧骨质疏松,造成不可逆转的后果。失重还可使脑垂体分泌激素的数量降低,这大大削弱了人体的新陈代谢和免疫功能。

    以上因素都会引起人的衰老,所以,人在太空中比在地球上衰老快。

    人在太空中会长高

    前苏联宇航员尤里·洛玛曼柯43岁时,在太空站生活了326天后回到地面时,身体竟长高了1厘米。人在太空中为什么会长高呢?

    我们知道,人的脊柱骨由33块骨头组合而成,其中绝大多数骨头中间由椎间盘所分隔,椎间盘是一种坚韧的纤维组织,起保护脊柱的缓冲作用。在太空,由于地心引力对脊柱的影响不复存在,脊柱骨因为得到舒展而延伸,所以生活了一段时间后,人会长高。

    也许有人会这样想,要是有朝一日,太空旅行成为可能,那么一个矮个人要想长高些,通过参加太空旅行团去旅行一年不就行了吗?其实是不行的。因为,这种长高与正常的身材增高是不同的。正常的增高是由于人体内较大的骨头的两端长出新的骨膜,并不断积累的结果。而太空人的高是在太空的特定环境下发生的,所以当他返回地球后,就会很快恢复原来的身高。

    曲线登月

    当年,“阿波罗”首次登月,引起巨大的轰动。也许,你会理所当然地认为,它登月飞行所走的轨迹是直线,因为两点之间直线最短,肯定既经济又省时。

    其实不然,阿波罗飞行实际上是沿着一条十分复杂的曲线进行的:先通过一、二级火箭把飞船送入180千米的圆形环地轨道。在此轨道上运行1.5~2周后,再通过第三级火箭的推动使飞船达到第二宇宙速度进入奔月轨道。在飞船距月面约110千米时,进入先椭圆后圆形的环月轨道。在作了13周的绕月飞行后才由登月舱正式登月。

    为什么登月飞行要走曲线呢?这是因为,地球、月球都在运动之中,火箭的发射都得考虑这种运动。选择最佳的航行轨道对规划飞行时间、优化火箭设计等都是必不可少的。再则,登月飞行是空前规模的航天创举,虽有充分而精确的前期试验,但在正式奔月和登月之前,先在绕地、绕月的“停泊轨道”上逗留做冲刺前的精心调整,也是十分必要的。

    未来的月球城市

    美国航天局提出一项计划,打算在2010年,耗资1000亿美元在月球建立一个可容纳100人的基地。这个基地外形为轮状或圆筒状,直径1~2千米,内有山脉、河流、湖泊、森林、草原等,还有许多生物,是一个能自给自足的充满生机的封闭型生态系统。

    美、日等国还准备从2020年起建设月球农场和工厂,研究开发利用微波照射等提炼氦的技术,以解决能源供应问题。并把多余的能源输送回地球。从2030年开始,月球上的居民将完全能做到自给自足。月球到地球之间设有定期往返的航线,中途还有供人们休息和娱乐的太空旅馆。

    航天界还有一个更令人鼓舞的目标,到2050年,在月球表面建造一个巨大的人造气罩,内有青山绿水,自然环境如同地球一样。到了那个时候,月球上将出现一座座崭新的城市。不过,由于客观因素影响,月球城市的居民不会太多,也许只有数百人。

    太空旅行

    美国安德鲁航天技术研究所已研制出一种新型推进方案,取名为“炼金师”。该方案能够大幅度降低航天飞机起飞和飞行的费用。因而,几年来一直停留在宣传阶段的太空旅行不久将成为现实。

    与以往的设计不同,航天飞机将不再凭借自己的力量起飞,而是由一架类似波音777的飞机来运载。如果采用传统的垂直推进方式起飞,航天飞机需要非常大的推力才能克服重力,而采用运载飞机可节省很多花在推进剂上的费用。另外一项降低费用的举措就是减轻安装在运载飞机上的航天飞机的重量,使之降低到通常起飞重量的五分之一。其中的奥秘在于,航天飞机的燃料箱里只装氢气。至于推进器工作所必需的、占推进剂总重量80%的氧气则由运载飞机和航天飞机在大气中共同生成。为此,它们需要在8000米高空盘旋3个小时之久。在盘旋的过程中,由涡轮机吸进的空气只有20%在推进器中燃烧,剩余的空气从燃烧室旁边的管道中通过。通过热交换器使这些空气充分冷却,变为液态;然后在离心机中分离空气中的其他成分;最后剩下纯液氧,其中的一部分被抽取到航天飞机的燃料箱里。在这之后,运载飞机和航天飞机发动火箭推进器,升到5万米的高空。在那里,航天飞机与运载飞机分离,航天飞机使用自己储备的氧气飞入太空。

    这种背负式技术还有另外两个优点:首先,航天飞机可以在世界上任何一个大型机场起飞;其次,起飞时的水平位置会让旅客们觉得更舒适些。富翁丹尼斯·蒂托飞往国际空间站花了2000万美元,但15年后,我们的太空之旅或许只需花费大约2万美元。

    太空移民举步维艰

    现在,人类已经掌握了比较成熟的航天技术,到宇宙中旅行,甚至居住都已经不再是梦想。面对地球的人口压力,科学家们提出了向宇宙其他星球移民的设想。但是,这个设想暂时还无法实现,因为它涉及到方方面面极为复杂的科学问题。

    首先,人类及动物在地球环境中经过漫长的演化,才逐步适应了目前地球上的物理、化学的生存环境。一旦到太空去生活,那里的生存环境与地球截然不同。即使设计的与地球环境相似,但也很难长期保持。一旦发生环境变化,后果不堪设想。

    其次,人类在太空中居住一旦遇到流星袭击,空气就会逃逸。缺乏维持人类生存的空气,人类及动物将无法生存。

    第三,在太空建造人类生活区,不但耗资巨大,而且以目前的科技水平也难以实现。所以,人类向太空移民的设想,目前看来,还很难实现。

    航天飞机会破坏臭氧层

    目前,我们都已经了解了臭氧层的价值。它在距地面大约30千米的高空,相当于给地球穿上一件衣裳,可以保护人类,免受太阳紫外线的伤害。过多的紫外线照射,会损害人的免疫能力,使人类皮肤癌发病率增多,并危及海洋生物的生存,因此保护臭氧层是全球数十亿人们的共同责任。

    据科学家研究发现,氯气和氯化物,氧化氮、氧化铝等都是破坏臭氧层的杀手。然而固体火箭助推器燃烧时在它的排放物中就会有上述物质。尤其是航天飞机的发射,据科学家统计,航天飞机在起飞后的2分钟内就向大气中排放出187吨氯气和氯化物,7吨氧化氮和180吨氧化铝,这些物质足以破坏800吨臭氧,这个数据是相当惊人的。

    因此,我们必须采取有效的措施改进航天飞机的发射技术,以便保护人类赖以生存的地球,保护臭氧层。

    航天飞机升降方式不同

    航天飞机发射都是垂直升空,返回地面时,却像滑翔机一样无声无息地降落。这是为什么呢?

    发射时的航天飞机身上“绑着”比自己还要大的外燃料箱,还有两枚助推火箭。在这些“大力士”的帮助下,航天飞机先上升到几十千米高空,扔下两枚耗尽燃料的助推火箭(它们可以用降落伞回收后重复使用)。再上升到100多千米高度时,又抛弃庞大的外燃料箱,这时航天飞机本身的发动机才足以把它送上几百千米的轨道。

    航天飞机挂了那么多东西,当然无法像飞机那样水平滑跑起飞,而且它受到的空气阻力也远远超过大型飞机。再说火箭发动机只能短时间工作。因此,航天飞机必须在最初一二分钟里垂直上升,尽快冲出稠密的低层大气。当它返航时,早已摆脱了累赘的外挂物,就能像滑翔机一样降落。

    飞机发射卫星

    我们都知道,要把卫星从地球送到太空,必须要克服地球的强大引力。传统的发射卫星方式是利用火箭作为运载卫星的工具。将卫星固定在火箭的前端,火箭点火后,在极短时间内达到第一宇宙速度,从而使卫星脱离地球,在太空中环绕地球飞行。

    可是,这种传统的发射卫星方式有一个缺点。发射卫星时,往往需要多级火箭;况且,火箭都是一次性使用,不能重复利用,因此,随着火箭级数的增加,卫星发送的成本就跟着急剧增加。

    能不能既节省投资,又能安全可靠地将卫星发送上天呢?有人把目光投向了飞机。现在,飞机的技术日趋完善,人们设想,用飞机将卫星带到尽可能高的高空,借助飞机的速度和高度,只要使用一级火箭就可以发射卫星了。这样,不仅可以大大节省卫星发射的地面设备,还可使相同质量卫星发射的成本大大下降。目前,利用飞机发射卫星的技术已基本成熟,即将投入正式使用。

    回收“太空垃圾”

    在太空中,漂浮着许多废弃的航天器及其零部件,我们把它们称为太空垃圾。太空垃圾中,大多数都是金属物品,它们可不是普通的“废铜烂铁”,而是十分宝贵的黄金、钛和钨等,具有很高的回收价值。

    还有一些“垃圾”就更宝贵了,它们是一些失效的或失控而未能进入预定轨道的卫星。如1980年发射的“太阳峰年观测卫星”,运行还不到1年时间,就因不能对太阳定向而成废物。1984年4月10日,“挑战者”号航天飞机将它抓入货舱,修复了它的对日定向系统,并加装一台观测器,使这颗重2吨、价值2.4亿美元的科学卫星起死回生。

    对一般只有8~10年工作寿命的卫星,通常都可通过更换部件、局部维修等方式,使它“返老还童”,费用只不过几百万美元而已。而修复后的卫星所发挥的作用是远远超过维修费用的,所以,我们要对“太空垃圾”回收再利用。

    模拟天空

    天空也能人造吗?英国科学家已经建了一个直径8米,安装着640个灯泡的大圆顶,这就是人造天空。这个人造天空能够模拟地球上任何气候条件下的光照情况,用来测量各种云层遮蔽天空时进入室内的太阳光辐射量,还用于测量不同时刻、不同气候条件和不同地区在一天中所得到的室内光照量。通过研究,人们能在将来更好地利用太阳能。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架