宇宙奥秘我来破-神秘莫测的银河系
首页 上一章 目录 下一章 书架
    银河系的牛郎和织女

    牛郎织女是我国最有名的一个民间传说,是我国人民最早关于星的故事之一。南北朝时期写成的《荆楚岁时记》里有这么一段:“天河之东,有织女,天帝之子也。年年织杼役,织成云锦天衣。天帝怜其独处,许嫁河西牵牛郎。嫁后遂废织纤。天帝怒,责令归河东。唯每年七月七日夜,渡河一会。”

    而民间故事中,传说天上有个织女星,还有一个牵牛星。织女和牵牛情投意合,心心相印。可是,天条律令是不允许男欢女爱、私自相恋的。织女是王母的孙女,王母便将牵牛贬下凡尘了,令织女不停地织云锦以示惩罚。

    织女的工作,便是用一种神奇的丝在织布机上织出层层叠叠的美丽的云彩,随着时间和季节的不同而变幻它们的颜色,这是“天衣”。自从牵牛被贬之后,织女常常以泪洗面,愁眉不展地思念牵牛。她坐在织机旁不停地织着美丽的云锦以期博得王母大发慈心,让牵牛早日返回天界。

    话说牵牛被贬之后,落生在一个农民家中,取名叫牛郎。后来父母去世,他便跟着哥嫂度日。哥嫂待牛郎非常刻薄,要与他分家,只给了他一头老牛和一辆破车,而把其他的都独占了,然后,便和牛郎分家了。

    从此,牛郎和老牛相依为命,在荒地上披荆斩棘,耕田种地,盖造房屋。一两年后,牛郎和老牛营造成一个小小的家。其实,那条老牛原是天上的金牛星。

    这一天,老牛突然开口说话了,它对牛郎说:“牛郎,今天你去碧莲池,那儿有仙女在洗澡,你把那件红色的仙衣藏起来,穿红仙衣的仙女就会成为你的妻子。”牛郎听了老牛的话,便悄悄躲在碧莲池旁的芦苇里,拿走了红色的仙衣。

    穿红色仙衣的正是织女。织女看到牛郎,才知道他便是自己日思夜想的牵牛。织女便做了牛郎的妻子,并与他生儿育女。

    王母知道这件事后,勃然大怒,马上派遣天神捉织女回天庭问罪。

    天空狂风大作,天兵天将从天而降,押解着织女便飞上了天空。正飞着,织女听到了牛郎呼叫她的声音:“织女,等等我!”织女回头一看,只见牛郎用一对箩筐,挑着两个儿女,披着牛皮(老牛临死前要求他这么做的)赶来了。慢慢地,牛郎和织女就要相逢了。就在这时,王母驾着祥云赶来,她拔下头上的金簪,往他们中间一划,霎时间,一条天河波涛滚滚地横在了织女和牛郎之间,无法横越了。

    后来,王母为牛郎和织女的坚贞爱情所感动,便同意让牛郎和孩子们留在天上,每年七月七日,让他们相会一次。

    从此,牛郎和他的儿女就住在了天上,隔着一条天河,和织女遥遥相望。

    牛郎织女相会的七月七日,无数成群的喜鹊飞来为他们搭桥。鹊桥之上,牛郎织女团聚了!

    神话毕竟是神话,牛郎与织女要在一夜之间相会是不可能的。牛郎星和织女星都是离我们非常遥远的恒星。在天文学上,测量恒星之间的距离,大多用“光年”来计算。光年就是每秒钟走30万千米的太阳光在1年里所走的距离。牛郎星离我们有16光年,织女星离我们有27光年,它们都比太阳还要巨大,只因为它们离我们十分遥远,所以看上去只是小小的光点。

    恒星的“恒”字,是和行星的“行”字相对而言的。实际上,宇宙中没有一个星是绝对地“恒”的,每个星都在动,只是动多动少而已。牛郎星每年在天球上移动0.658角秒;此外,每秒钟还以26千米(93600千米/小时)的速度离开我们往外跑。所以,牛郎星在空间的速度比地上最快的客机还快几十倍。织女星动得慢一点,它每年在天球上移动0.345角秒,以14千米/秒的速度离开我们往外跑。

    牛郎星和织女星都比太阳大得多、亮得多。为什么我们看起来只是两小点的光呢?那是因为这两个恒星比太阳离我们远得多。牛郎星的光度为太阳的10.5倍,直径比太阳大0.7倍,质量比太阳差不多大0.7倍。织女星的光度等于太阳的60倍,直径等于太阳的2.76倍,质量差不多等于太阳的3倍。所以,织女星比牛郎星大,比牛郎星亮,比牛郎星重,算来还是牛郎星的“大姐姐”。牛郎星离我们的距离为154万亿千米,比太阳远100万倍;织女星离我们的距离为250万亿千米,比太阳远170万倍。织女星不仅比牛郎星大些、亮些,而且又远些,所以我们看起来两个星差不多一样亮。光从牛郎星来到我们的眼里,需要16年4个月;光从织女星来,需要26年5个月。牛郎和织女两星不是在同一方向,两星之间的距离是16.4光年。无线电波的速度和光一样,假使牛郎想打一个无线电话给织女,得等32年才有收到回电的可能。

    人类在欣赏它们灿烂的光辉的时候,竟幻想出一个哀艳动人的故事来。

    银河系形成之谜

    我们身处的银河系恰如一条朦胧不清的光带横贯夜空。银河究竟是怎么形成的呢?

    关于银河系名字的来源,还有一个美丽的传说。希腊神话中,赫拉被骗去喂养她丈夫宙斯的私生子,当她发现自己上当时,便将孩子推到一边,结果不小心将自己的奶水喷洒出来,于是就形成了银河系。

    科学家研究发现,银河系是一个巨大的、由数千亿颗恒星组成的星系。它的中心部分凸出,像一个很亮的圆盘,直径约为2万光年,厚1万光年,平均宽度约为20光年。这个区域由高密度的恒星组成,银河晕轮弥散在银盘周围的一个球形区域内,银晕直径约为9.8万光年,这里恒星的密度很低,分布着一些由老年恒星组成的球状星团。在银河中还可以看到许多暗带,是大量的星际介质和暗星云。

    太阳系是银河系的一个部分,太阳到银河系的中心距离约为3.3亿光年。由于太阳系不在银河的中心位置,所以看上去银河在天空中既不与赤道的位置相符,又不通过地球的南北极上空,而是斜躺在天空。随着地球的自转和公转,银河就随着季节的变化改变着它在天空中的位置,夏天的傍晚朝向南北方向,到了冬天的夜晚又横过来,变成接近东西方向了。

    银河系本身也在旋转,一面围绕自己的中心轴,以2.5亿年一周的速度自转,同时又以214千米/秒的速度在宇宙中不停地运动着。只是距离我们的地球太遥远了,看上去似乎是静止不动的。

    有的科学家认为银河系可能是由原始星系云的收缩、冷却、分裂而产生的。20世纪80年代初期,当时宇宙哲学家提出了理论上的膨胀宇宙观点。天文学家认为膨胀从根本上改变了婴儿时期宇宙的面貌。膨胀之前,宇宙的密度是一致的,就像无风时的湖面。膨胀之后,宇宙的密度不再平均,就像风暴出现后的海面一样有波浪和涟漪。

    宇宙中的另一因素——暗物质则对这些波纹演变成更加明显的堆块起到了推波助澜的作用。那些密度较高的区域由于有着比周围更强的引力,从而能够吸引更多的物质,并最终成为各个星云的种子。

    尽管这一基础理论前尚未得到证实,但通过近几年天文学家对大量距离更远的星云调查正得到更深入的检测。与此同时,还有许多基础性的问题尚未得到解决。如:为什么有那么多不同种类的星云?为什么有的星云有旋臂而有的没有?它们为什么有不同的颜色?它们为什么有不同的大小?等等。

    大爆炸之后的40亿~50亿年之间,即距今80亿~90亿年之前出现了第一批成熟的星云。当时的星云形状种类与现在天文学家所看到的星云形状是相同的,有带着经典的风车形状的螺旋形星云,有由一大群恒星构成的椭圆形星云,也有杂乱无章的不规则星云。当时的星云总数显然要比目前的多出3~4倍。

    如此丰富的星云种类是如何淘汰并最终留下现在天文学家在近空所看到的这些星云的呢?是否有星云相互撞击形成更大的星云,或者有些则消失了?

    黑洞也是星云形成中的一个最为神秘的因素。许多天文学家认为黑洞在星云开始形成中起着至关重要的作用,是它通过自己强大的引力场将物质吸引到一起的。

    近来,科学家研究发现,在距地球大约5000万光年的室女座星云不存在恒星,是一个黑色星系。如果这一结论得到证实,银河形成之谜可能被解开。

    室女座星系由一个巨大的氢云和奇异的暗物质组成,里面包含的物质足以产生数百万颗恒星,但是某些因素阻碍了恒星的产生。科学家此前预测,宇宙中的确存在这样的黑色星系,并且其数目可能是一般星系的100倍。

    科学家发现,一个编号为“室女H21”的旋转星系,除了里面的小星系,它所包含的氢气足以生产1亿颗太阳大小的恒星。

    据目前所知,室女座附近没有氢云,两个氢云在一起几乎是不可能的。科学家很可能低估了黑色星系中氢气的含量。如果远方类星体释放出来的紫外线使大量氢原子发生电离,无线电天文望远镜捕捉到的氢气肯定比较多。

    迄今为止,银河系的形成原因仍是一个谜。

    银河系大小之谜

    在浩瀚的宇宙中,银河系就像一个小小的玉盘。可是人们不禁会问,这个晶莹剔透的玉盘又有多大呢?

    1918年,天文学家开始观测我们银河系的造父变星,想用这种新的方法来确定银河系的大小。造父变星属于球状星团,球状星团是由几万至几千万颗恒星稠密地聚集在一起的球状集合体,直径大约为100光年。

    这些星团呈现出完全不同于我们邻近空间的天文环境。在较大的星团中心,恒星以每10立方秒差距500颗的密度聚集在一起,而在我们邻近的空间中每10立方秒差距只有一颗恒星。在这种情况下,星光会比地球上的月光亮得多,假如在靠近这种星团的中心有一颗行星的话,这颗行星将不会有黑夜。

    天文学家发现,在我们的银河系中约有100个已知的球状星团,各个球状星团与我们的距离为2万~20万光年。这些星团分布在一个大球中,银道面从中间把大球切成两半,它们像晕一样环绕着银河系主体的一部分。

    天文学家假设它们围绕着银河系的中心转动,并把银河系中由球状星团组成的这个晕的中心点定在人马座方向上,距离我们约5万光年。这意味着,我们的太阳系根本不在银河系的中心,而是远在银河系的一个边缘。

    从银河系的形状像一个圆盘这一事实出发,天文学家一直推测,它必定在空间旋转着。1926年,荷兰天文学家开始测量这种旋转。因为银河系不是一块固体,而是由无数单个恒星组成的,所以不能指望它像轮子那样一块旋转,而是靠近圆盘引力中心的恒星必定比远处的恒星绕中心旋转得快。因此,靠近银心即在人马座方向上的恒星应该趋向于超前我们的太阳而移动,而远离银心即在双子座方向上的恒星在公转中应该有落后于我们的倾向。恒星离我们越远,速度的这种差异应该越大。

    在此基础上,天文学家推算出,银河系的平均直径为10万光年。在这个目前被认为是正确的新模型中,圆盘在中心处的厚度约为2万光年,向边缘逐渐变薄。太阳位于从中心到边缘2/3的地方,圆盘在这里的厚度约为3000光年。但这些只是粗略的数字,因为银河系并没有非常明确的边界。

    银河系旋臂之谜

    银河系张开的旋臂像母亲的臂膀,将银河系内的一切物质似孩子般紧紧地怀抱着。那银河系的旋臂又是什么呢?

    广阔的宇宙中存在着形形色色的星系,科学家按其形态把星系分为旋涡星系、棒旋星系、椭圆星系和不规则星系四类。其中前三类占绝大多数。旋涡星系和棒旋星系占80%,椭圆星系占17%,不规则星系仅占3%。

    20世纪30年代,人们开始了对银河星系结构的研究。20世纪40年代,荷兰科学家认为冷氢能发出一种射电辐射。到1951年,美国天文学家对辐射进行了实际探测。他们测定了红云的分布和运动,揭示了银河系的螺旋结构,同时发现许多河外星系也是螺旋结构。

    科学家们发现,银河系有3条对称的旋臂,即靠近银河系中心方向的人马座主旋臂、猎户座旋臂和英仙座旋臂,太阳就位于猎户座旋臂的内侧。

    20世纪70年代期间,人们通过探测银河系一氧化碳分子的分布,意外地发现了银河系的第4条旋臂,称3000秒差距旋臂,它跨越狐狸座和天鹅座。1976年,法国的两位天文学家还具体地绘制出了以上4条旋臂在银河系中的位置,这是迄今最好的银河系旋涡结构图像。

    关于银河系存在旋涡结构的原因,有人认为是银河系自转引起的。荷兰天文学家通过研究证明,恒星围绕银心旋转就像行星围绕太阳转,距离银心近的恒星运动速度快,离银心远的则速度缓慢。他计算出太阳绕银心的公转速度为220千米/秒,绕银心一周要花25亿年。

    有科学家对奥尔特的学说提出了质疑,认为既然太阳已经绕银心转了约20周,那么旋臂应该缠得很紧,根本看不到旋臂。为此,1942年,瑞典天文学家林德布拉德提出“密度波”概念,后来美国科学家提出了系统的密度波理论,初步解释了旋臂的稳定性。

    美国天文学家通过对银河系434个银河星图的图表绘制发现,银河系并没有旋涡结构,而只是一小段一小段的零散旋臂,旋涡只是幻影。因为银河系各处产生的恒星总是沿银河系旋转的方向形成一种“串珠”,而不断产生的新恒星在连续显现着涡旋的幻影。

    近来,澳大利亚天文学家在绘制银河系氢气分布图时惊奇地发现又一条巨大的、向外伸展的旋臂,这使得我们所在星系的天体图将不得不重新绘制。这一巨大的由氢气组成的气体旋臂有7.7万光年长,几千光年厚,沿着银河系最外层的边缘伸展,并且掠过了从星系核心旋出的3条主要的旋臂。

    银河系到底存在不存在旋臂?是连续的、对称的旋臂还是零散的、局部的旋臂?这些至今还是谜。

    银河系中心黑洞之谜

    浩瀚苍穹中,黑洞好似一个吞噬一切的无底洞,任何物质一旦掉进去,就再也无法逃脱。它虽然是隐形的却吸引力无穷,就连光线也不放过。近来,有科学家称,银河系中心有巨大黑洞。它,会不会将我们也吞噬了呢?

    银河黑洞曾经是一个很有争论性的议题。近来天文学家通过使用欧洲南天巴拉那天文台一部极大望远镜,以及一部简称为NAC0的高性能红外相机进行观测,发现我们银河系的中心藏着一个质量超过200万个太阳的黑洞。

    观测过程中,天文学家耐心地追踪一颗编号为S2的恒星运动。这颗恒星距离银河中心大约只有17光年,或者说是冥王星轨道半径的3倍距离,以5000千米/秒的速度绕银河中心公转。结果证明,恒星S2是在一个不可见天体强大的重力作用下运动,而这个天体极端细小且致密,换句话说它是一个超大质量的黑洞。

    天文学家观察发现,宇宙爆炸产生的一个黑洞目前正在以比其周围的星球高出4倍的运行速度穿过银河系,这也同时证明了黑洞的确是超新星爆炸后产生的后代。该黑洞至少距离地球有6000光年,目前大致方向是朝着地球飞来,但近期不会对地球构成威胁。因此,未来5年间,人类有望更近距离地接触黑洞,这将成为对爱因斯坦广义相对论的一个检验。

    这是人类发现的第一个在银河系内部快速飞行的黑洞。一颗人类可以观测到的星球每2.6天绕黑洞飞行一周,黑洞从这颗星球中吸取养料。

    根据黑洞理论,黑洞是由大质量的恒星坍缩形成的。此时原来构成恒星的物质集中于一“点”,其密度趋向无限大,以至于光都无法逃脱它的引力。因此从外界看,这种天体是全黑的。由于黑洞的这一特点,使得天文学家寻找黑洞的工作十分困难,天文学家只能根据黑洞能够剧烈地“吞噬”它附近的天体这一性质确定其存在。

    通常黑洞有三种类型,一种是位于星系中央的“超级黑洞”,另一种是恒星级的黑洞,其质量大概有数十个太阳左右,还有是介于两者中间的“中等质量黑洞”。那些规模较大的黑洞主要形成于大型的星系中间,这次发现恒星黑洞大多是在大型星球爆炸时产生的。星球爆炸时大多数物质会被炸飞,但如果留下的物质足够大,是太阳的3~15倍,那么它们就会形成黑洞。

    天文学家在研究距离太阳系2.6万光年的人马座A时发现,其发出的射电波信号虽然能穿透尘埃,却要受到星际等离子体介质的散射影响。

    为此,天文学家连续守候20个月等待最佳天气条件,一举揭开其神秘面纱。这个隐藏在宇宙中的“暗物质”至少有40万倍于太阳的质量,而直径却仅与地球轨道半径相当,运动速度更是只有8千米/秒,完全符合“超级黑洞”的特征。因为NACO相机能够追踪非常靠近银河中心的恒星,所以它能很精确地定出中心黑洞的质量。除此之外,随着天文学家继续观测恒星如何绕着超大质量黑洞运行,也可以提供爱因斯坦广义相对论的严格检验。

    天文学家第一次看到距离黑洞中心如此近的区域,对人马座A周围的恒星轨道运动研究显示,这一区域的质量甚至约相当于400万个太阳。而且,这一区域的引力都非常强大,根本不可能有恒星存在。通过分析这些恒星团的特点,天文学家们指出,在它们的中心区域同样也存在着一个黑洞,但其尺寸要小得多。

    天文学家认为,大型黑洞可能是通过自身强大的引力将恒星团“拽”到了自己的附近。不过,天文学家们同时也指出,要证明这一理论,以目前的科学水平几乎是不可能的。现在唯一可以明确的是,新发现的恒星团与可能导致被黑洞吞噬的“危险区域”之间仍有相当的距离。

    科学家们认为,位于这一潜在黑洞附近的恒星团具有非常高的运行速度,使得其可以避免距离黑洞过近。据测算,恒星团的运动速度大约为850千米/秒。

    相信,随着科技的发展,我们会发现银河系中心黑洞越来越多的奥秘。

    银河系弯曲之谜

    银河系是一个巨大的、由数千亿颗恒星组成的星系。它的中心部分凸出,像一个很亮的圆盘,直径约为2万光年,厚1万光年,平均宽度约为20光年。这个区域由高密度的恒星组成,银河晕轮弥散在银盘周围的一个球形区域内,银晕直径约为9.8万光年,这里恒星的密度很低,分布着一些由老年恒星组成的球状星团。在银河中还可以看到许多暗带,是大量的星际介质和暗星云。

    早在半个世纪前,科学家就已经发现了银河系“弯曲”的特性,但是始终未能弄清楚银河系弯曲的原因。

    一个由意大利和英国天文学家联合组成的国际小组在分析银河系复杂的构造时,追溯到银河系外层星盘状形成的起源,并且对于银河系星盘的弯曲情况提供了确凿的证据,这一弯曲度比人们原来想象的至少要多出70%。通过近红外线2MASS观察,科学家们对银河系星盘结构,特别是其中的弯曲部分进行了重新构造。通过观察发现,这种弯曲是由于银河系星盘在第一、第二银河经度象限时向上凸翘。

    近来,科学家观察发现,银河系弯曲区域面积广阔,方圆约有2万光年。l光年为10万亿千米,代表一束光一年内在真空里传播的距离。而分布在银河系中的氢气层形状弯曲尤为明显。

    为判定银河系变形原因,科学家对弯曲区域的氢气流情况加以研究。结果又让他们吃了一惊。他们发现,银河系不但弯曲变形,而且还以三种模式颤动,一种模式是像一只碗,银道面弯成一圈,另一种像一具马鞍,第三种像一顶浅顶软呢帽的边缘,背面是弯曲的,正面是垂直向下的,就像“鼓面振动”。

    科学家将银河出现异象的外因归咎于银河系“邻居”大小麦哲伦星云。麦哲伦星云环绕银河系运行,运行一周时间为15亿光年。

    银河系被大量暗物质所环绕,当大小麦哲伦星云环绕银河系运行时,引起暗物质激荡,导致银河系变形。暗物质无法为人类肉眼所见,但宇宙空间的90%由其构成。

    科学家根据研究成果制作了一个银河系“变形”的电脑模型。模型显示,当麦哲伦星云沿轨道环绕银河系运行时,由于暗物质受激运动,银河系发生弯曲。

    科学家过去从质量角度认为,麦哲伦星云质量并不大,只有银河系的2%,这样小的质量不足以影响银河系形态。因此,麦哲伦星云因为质量较小曾一度被排除在嫌疑之外,科学家认为幕后一定有一个拥有2000亿个恒星的大星系影响银河系的形态。

    科学家认为,电脑模型揭示了暗物质的重要作用。银河系的暗物质尽管无法为肉眼所见,其质量20倍于银河系其他可见物质。当麦哲伦星云穿过暗物质时,暗物质运动使星云对银河系的引力影响进一步扩大。就像“船只行驶过洋面”,引起的波浪威力强大,足以使整个银河系弯曲并振动不已。

    持反对意见的人则认为,银河系发生形变可能与其自身的运动轨迹、能量变化有关。

    究竟是什么原因导致银河系“水波吹皱”,出现变形呢?迄今为止,还是一个谜。

    银河系蛇状闪电之谜

    闪电是地球上常见的一种很普通的自然现象。其实,不仅仅是地球上会出现闪电,银河系中也存在着持续了几百万年的巨型蛇状闪电。

    闪电是一种自然现象,暴风云通常产生电荷,底层为阴电,顶层为阳电,而且还在地面产生阳电荷,如影随形地跟着云移动。阳电荷和阴电荷彼此相吸,但空气却不是良好的传导体。阳电奔向树木、山丘、高大建筑物的顶端甚至人体之上,企图和带有阴电的云层相遇;阴电荷枝状的触角则向下伸展,越向下伸越接近地面。最后阴阳电荷终于克服空气的阻碍而连接上。巨大的电流沿着一条传导气道从地面直向云层涌去,产生出一道明亮夺目的闪光。一道闪电的长度可能只有数百米,但最长可达数千米。

    闪电的温度从1.7万~2.8万摄氏度不等,也就是等于太阳表面温度的3~5倍。闪电的极度高热使沿途空气剧烈膨胀。空气移动迅速,因此形成波浪并发出声音。闪电距离近,听到的就是尖锐的爆裂声;如果距离远,听到的则是隆隆声。在看见闪电之后如果开动秒表,听到雷声后即把它按停,然后以3来除,根据所得的秒数,即可大致知道闪电离你有几千米远。

    大多数的闪电都是连接两次的,第一次叫前导闪接,是一股看不见的空气,叫前导,一直下到接近地面的地方。这一股带电的空气就像一条电线,为第二次电流建立一条导路。在前导接近地面的一刹那,一道回接电流就沿着这条导路跳上来,这次回接产生的闪光就是我们通常所能看到的闪电了。

    长期以来,人们的心目中只有蓝白色闪电,这是空中的大气放电的自然现象。其实除了蓝白色闪电外还有黑色闪电、干闪电、海底闪电、高速闪电、银河系巨型蛇状闪电等多种形态。

    银河系巨型蛇状闪电是怎样形成的呢?它和普通闪电又有什么不同呢?

    银河系这道巨大的蛇状闪电是天文学家在1992年发现的,它位于人马座,长达150光年,宽2~3光年,并且在不断摆动。科学家估计它已持续了几百万年的时间。

    天文学家研究发现,银河系中心巨大蛇状闪电是由于导电分子云与银河系中心的磁场相互作用形成的。由于带电粒子不断生成和消失,因而这一闪电是摆动的。天文学家在银河系中心还发现了22条类似的闪电,但长度均没有这一条长。

    巨大蛇状闪电是目前在银河系中发现的唯一打两个结的闪电,科学家猜测,打结的地方是因为磁场很强,迫使闪电改变了形状,同时也使打结的地方辐射出的电磁波大大加强。但是,迄今为止,仍没有发现相应证据加以证明。

    银河系生物之谜

    人类在探索宇宙奥秘的同时也在不断询问:我们在宇宙中到底是不是独一无二的?别的星球上或其邻近的星球究竟还有没有生命存在?

    众所周知,生物进化的过程如此漫长,把它和恒星演化的时间去对比也没有什么不恰当。天上有的恒星是那么年轻,甚至爪哇猿人曾经是它们诞生的见证人。在这种恒星周围的行星上,目前高级生物还来不及形成,大质量恒星发光发热只有几万年,这对于生物进化实在太短暂了。看来合适的对象只有从质量相当于或小于太阳的恒星中去找。

    除了百分之几的少数例外,银河系中恒星的发热年代都很长,足以使智慧生物渐渐形成。但尚不清楚的是这些恒星有没有行星围绕着它们转,因为只有在围绕恒星公转的天体上才能具备液态水所需的温度。

    可惜天文学家对别的恒星周围的行星还一无所知。由于它们实在太遥远,即使离我们最近的一些恒星确有这种伴侣天体绕它们转,人们也还没有能做到用望远镜直接观测这些微乎其微的对象。

    生命离不开液态水。我们想知道,在某行星上是不是已经存在类似人类甚至进化阶段更高的生物。南非德兰士瓦省翁弗瓦赫特的发掘结果告诉我们,早在35亿年前地球上就存在过比较高级的单细胞生物蓝藻,而人们估算的地球年龄只比这个数字大10亿~15亿年。所以我们要搜索的对象星周围应该具备这样的条件,使原始生物至少有40亿年之久能稳定地向较高级生物进化。

    科学家研究发现,生物所在的行星与恒星的距离与生物的产生有关。可是,行星与各自恒星的距离是否合适呢?一个行星至少应该满足的条件是它与所属恒星的距离使得辐射在它表面造成液态水所需的温度。

    在太阳系中,水星极靠近太阳,而离太阳比火星更远的所有外行星则受阳光照射太弱,不够温暖。别的恒星周围的行星我们始终还没有见到,怎样才能知道它们之中有多少已经具备了距离恒星恰到好处的条件呢?地球无疑处在太阳系生命的内部,火星和金星靠近此带边缘。科学家发现金星表面温度超过450摄氏度,经过取土分析并没发现生物细胞的任何迹象。一个行星必须同时满足许多条件才能栖息生物,天体具备适于生物生存的气候是多么稀罕。除了有液态水,适宜的气候也是生命产生的一个重要因素。科学家指出,只要把我们与太阳的距离缩短5%,地球上的生物就会因热不可耐而不能生存。这段距离只要加长1%,地球就要被冰川覆盖。我们所居住的行星伸缩余地是不大的,因此,外部条件合适、使生物能进化到较高级阶段的行星,在银河系中最多只有100万个。

    科学家还发现,除了少数例外,整个宇宙中化学元素的分布大体上是相同的,银河系中离我们最遥远的恒星,甚至别的星系中的恒星,它们的化学组成和太阳一样。它们大多由氢、氧和其他的化学元素组成。

    因此,科学家认为,即使是在一个遥远的但气候适宜的行星上,也能找到构成一切有机分子所需的各种物质。然而,从这类简单有机化合物向那些构成生命基础的复杂分子演变,是一条漫长的道路。凡是可能孕育生命的场所,实际上生物都已出现,那么银河系中可能有着100万个居住生物的行星,这些生物也许各自都已演变了40亿年,只不过它们理应处在各自不尽相同的进化阶段罢了,甚至有些行星上的生物已达到智能生物阶段了。

    究竟银河系到底有没有其他生物存在?迄今为止,还是一个谜。

    银河系恒星质量之谜

    我们都知道,质量是物质的最基本的属性,又是衡量物体最基本的物理量。天体质量的特征就是“巨大”。测量被研究物体的质量,这本来是很容易理解的事。但是,给恒星“称”体重,或者说求其质量,恐怕会有人认为这是不可能的。

    在地球上测量物体的质量,这是很容易理解的,但是测量遥远恒星的质量,则是一件非常困难的事。我们已经知道,恒星是非常遥远的天体,但居然还能看到它的光辉,那么恒星的真实光度一定是很强的,维持这么长时间的强光源的质量也一定是可观的。

    宇宙中大部分已知恒星的质量都比太阳小,它们都是寿命在数百亿年左右的矮星。根据传统的天文学理论,这些矮星由于体积小,因此其内核变化不可能产生大量的重元素,比如氧和铁。而宇宙中目前存在的这些重元素都是由更少见的、体积更大的恒星产生的。这些恒星亮度极高,寿命比矮星短。

    长期以来,恒星质量一直是天文学家们所关心的。那么,恒星的质量到底能达到多少,这个问题也一直困扰着天文学家。

    研究表明,恒星的质量大多在太阳质量的百分之几到150倍之间。一般恒星质量在0.1~10个太阳质量之间。如果是质量再大的恒星,它就要爆炸瓦解。如果是质量再小的恒星,它的中心温度就不会很高,也就不能成为具有恒星性质的天体。由此可见,恒星质量差别比体积差异小得多。根据一颗恒星绕另一颗恒星的运动,可以利用开普勒第三定律计算出恒星的质量关系。

    现在已知质量最大的恒星之一如HD93250星,它的质量大约是太阳质量的120倍。HR2422双星的主星和伴星质量大约都是太阳的59倍,角宿一双星的主星质量约为太阳的10倍,五车二双星中两星质量各为太阳的2.7和2.6倍,天狼星主星质量为太阳的2.1倍,75%的白矮星质量介于太阳的0.45~0.65倍之间,许多红矮星的质量不到太阳的一半乃至小于太阳的十分之一。可见,在恒星世界里,太阳质量居中等地位。当然,目前已准确测出质量的恒星还不多,还有许多研究工作要做。恒星之间的直径相差l亿倍以上,而恒星之间的质量相差仅几千倍。不难想象恒星之间的密度差别是何等惊人了。

    德国科学家利用“哈勃”太空望远镜对银河系中体积最大的一个年轻星团——圆拱星团进行了观测。这个星团由数千颗恒星组成,总质量大约为1.1万个太阳的质量。该星团靠近银河系的中心,这个区域有利于恒星的生长。起初,科学家期望能在圆拱星团中找到超大型恒星,但是从星团中恒星的亮度和组成恒星的物质判断,其中没有一颗恒星的质量超过太阳质量的150倍。

    其他科学家对圆拱星团附近的另一个星团进行了观测,尽管观测的恒星数量较少,但也得到了类似的结果,即银河系恒星质量的上限可能大约是太阳质量的150倍。

    为什么银河系恒星质量可能存在上限呢?

    科学家发现只有特殊的双星系统才能测出质量来,一般恒星的质量只能根据质光关系等方法进行估算。已测出的恒星质量大多介于太阳质量的百分之几到120倍之间,一般恒星的质量在0.1~10个太阳质量之间。

    随着科技的不断进步,人类将一步步揭开恒星质量的面纱。

    奇异的流星之声

    流星竟然会发声,似乎闻所未闻。然而,事实的确就是这样!

    人们对于流星不会感到陌生,然而有一点却使人感到困惑不解:伊西利库尔人是先听到了奇怪的声音,然后才看到流星的。

    伊西利库尔是一座小城,位于俄罗斯辽阔的西伯利亚平原。那是许多年前的一个寒冷的冬夜,城里的大街小巷堆满了积雪。在这片雪原的上空是繁星闪烁的天宇,四周一片寂静。

    突然,从天宇的某个地方,传来了一声尖锐刺耳的裂帛声。人们翘首远眺,只见一颗璀璨的流星,散射着金黄色的光芒,像箭一般地掠过长空。流星留下了一条长而发亮的轨迹。与此同时,那种裂帛似的声音也随之消失了,小城的雪夜又重归寂静。

    这到底是怎么回事呢?

    众所周知,流星以飞快的速度进入大气层后,和空气发生剧烈的摩擦,很快便烧成一团火球。绝大多数流星在60千米~130千米处的高空就已燃烧殆尽,只有极少数到20千米~40千米的高空处才烧完。而声音在大气中的传播速度是330米/秒,因此从那么高的地方传送到我们耳边的时间至少需要1分钟,更准确地说要在3~4分钟之后。当流星飞过天空的同时,人们听到了它所发出的刺耳的声响,就好像在看见闪电的同时就听到雷声,表明这个雷就落在你的身旁。难道这颗流星竟是在离你的头顶不过几十米的空中飞过去的吗?这显然不可能!

    尽管许多人认为同时看到和听到流星是完全不可能的,然而世界各地的研究者们积累下来的材料却越来越多,许多史册中也有类似的记载。为了研究这一奇特现象,俄罗斯著名科学家德拉韦尔特教授收集了大量伴有反常声音的流星资料并给这种奇怪的流星起了一个确切的名字:电声流星。

    在德拉韦尔特教授所整理的电声流星纪录表中,有这样几段有趣的记载:

    1706年12月1日,托波尔斯克城的一位居民在流星飞过时,听到了一阵刺耳的“沙沙”声。

    1973年8月10日,鄂木斯克省的格卢沙科夫看到漆黑的夜空中突然闪出一道白色的电光,照得四周亮如白昼。在流星飞行的15~18秒钟期间,一直可以听到嘈杂的响声,好像一只巨大的鹫从高空中猛扑下来一样。

    1938年8月6日,飞行员卡谢耶夫在鄂木斯克上空看到一颗明亮的橙黄色流星,它飞到半途中时,传来了刺耳的“吱吱嘎嘎”的响声,好像一个缺油的车轴在转。有趣的是,著名的通古斯陨星和锡霍特阿林陨星陨落时,许多目击者都听到了类似群鸟飞行的嘈杂声音和蜂群鼓翅的嗡嗡声。

    这些不寻常的声音在被人们听到之前都走过了50千米~200千米的距离,最多的可达到420千米,“正常的”声音大约要经过21分钟才能传送到。实际上,等不到它们到达我们的耳边,就会在路途上衰减乃至消失了。可奇怪的是,在许多情形下,电声流星的“信号”甚至还要早于流星本身而率先出现。目击者们往往都是听到声音之后,循声望去,才看见空中出现了流星。目击者们对流星之声的描述也是形形色色的,甚至是千奇百怪的:嗡嗡声、沙沙声、啾啾声、辘辘声、剌剌声、淙淙声、沸水声、子弹炮弹火箭飞过时的啸声、惊鸟飞起的扑棱声、群鸟飞起的拍翅声、电焊时的噗噗声、火药燃烧时的哧哧声、噼噼啪啪的响声、气流的冲击声、钢板淬火和枯枝折断时的声响……最叫人感到难以理解的是,有些人能够听到流星的声音,而另外一些人则什么都没听到。例如1934年2月1日一颗流星飞临德国时,25个目击者中有10个在流星出现的同时听到了啾瞅声,其余的人则称流星是“无声”的。还有一则报道说,1950年10月4日,在美国密苏里州出现流星时,只有孩子们才听到了流星飞过时发出的啸叫声。简直令人不可思议!尽管科学家们都承认电声流星现象是客观存在的不可否认的事实,但其秘密至今没有解开。

    有些专家认为,所有这一切的谜底就在于流星飞行时所发出的电磁波。这些电磁波以光速传播,有些人的耳朵能够以某种我们目前还不知道的方式把这种电磁振荡转换成声音,转换的方式因人而异,各人听到的声音自然也不相同。可是对另外许多人来说,就完全没有这种“耳福”了。

    科学家曾做过一个试验,使用大功率的高频发射机从300米外向受试者发射高频电波,结果他们都听到了嗡嗡声、弹指声和敲打声。但受试者强调说,这些声音仿佛是从“头里面”发出来的,然而电声流星的声音却是有着明确的“外来性”,差不多正常的耳朵都能够感受到。这表明电磁波假说也有难以自圆其说之处,可见要揭示此奥秘的成因并非易事。

    流星之声究竟如何形成的,至今仍是一个谜。

    陨石雨之谜

    在晴朗的夏天晚上,我们经常可以看见美丽的流星划过天空。有时候,一大片流星会连续不断地划空坠落,就形成了流星雨。流星或流星雨都是些天体小块从地球外部闯进了地球大气,因与大气摩擦燃烧而发光。没烧完的流星就落到地面上了,这便是陨石。如果有许多块落到地上,就称为陨石雨。

    据《竹书纪年》记载:“帝禹后氏八年雨金于夏邑。”这是公元前2133年降落在今河南省的一场铁陨石雨,是人类历史上最早的一次陨石雨记录。以后记录不断,总数有二三百条之多,对于流星雨描述得非常生动而形象,常用“星陨如雨”“众星交流如织”“流星如织”等加以形容。有些记录很全面,很完整,包括时间、流向、个数、在天空中的位置,有时还记录了颜色和响声。这些记录对于研究我国古代陨石雨的情况都很可贵,它们描写得非常形象、准确。例如沈括曾在他的名著《梦溪笔谈》中记载了陨石陨落的全部过程,从摩擦生热发光、光球的大小、爆炸声、陨石飞行的方向、余热、陨石的形状、大小、陨石坑,直到陨石的性质和收藏经过等都讲到了。中国古人在记录流星雨和陨石的同时,还对它们的来源进行了探索,提出了基本上正确的看法。早在春秋时代我国人民就认为,陨石是天上的星陨落而来的。明末著名科学家宋应星也说“星坠为石”。

    流星雨和陨石的记录在探索宇宙秘密方面很重要。陨石是从地球外面飞来的实物标本。对流星雨和陨石的研究,对认识天体的起源和演化、彗星的轨道、天体的化学成分等等都有重要价值。我国古代人民对此做出了杰出的贡献。

    流星雨是被称为流星群的、沿同一轨道绕太阳运行的大群流星体,在地球公转轨道上与地球相遇时出现的天相。流星雨出现之际,流星出现的频率为几千颗到几万颗每小时。这种天象虽然有周期性,但是规模巨大的流星雨却少见。规模巨大的流星雨极为壮观。流星雨犹如自然界为人们施放的焰火。由于流星雨出现的天区的不确定性以及流星出现的瞬时性,所以一般天文台不安排流星的常规巡天观察。

    大量的观测表明,每年从天球上的某一点及所谓流星群的辐射点发出的流星雨可出现许多次。当围绕太阳运行的流星群经过地球附近之际,由于受地球引力的振动,大量的流星体改变其轨道向地球靠近并且进入地球高层大气就会出现流星雨现象。流星的光主要集中在其本体的周围。亮的流星尤其是火流星,在其本体之后,沿着流星经过的路径,可以看到比其头部暗弱的光,称为流星的余迹。火流星余迹的持续时间为几秒钟,有的可达几分钟。

    天体怪星之谜

    20世纪30年代,天文学家在观测星空时发现了一种奇怪的天体,它既是“冷”的,只有两三千摄氏度,同时又是十分热的,可以达到几十万摄氏度。也就是说,冷热共生在一个天体上。1941年,天文学界把它定名为“共生星”。它是一种同时兼有冷星光谱特征(低温吸收线)和高温发射星云光谱(高温发射线)的复合光谱的特殊天体。几十年来已经发现了约100个这种怪星。许多天文学家为解开怪星之谜耗费了毕生精力。

    最初,一些天文学家提出了“单星”说,认为这种共生星中心是一个属于红巨星之类的冷星,周围有一层高温星云包层。红巨星是一种处于比较晚期的恒星,它的密度很小,体积比太阳大得多,表面温度只有两三千摄氏度。可是星云包层的高温从何而来呢?人们无法解释。

    太阳表面温度约有6000摄氏度,而它周围的包层——日冕的温度却达到百万摄氏度以上,能不能用它来解释共生星现象呢?

    有人提出,日冕的物质非常稀薄,完全不同于共生星的星云包层。因此,太阳不算共生星,也不能用来解释共生星之谜。

    也有人提出了“双星”说,认为共生星是由一个冷的红巨星和一个热的矮星组成的双星。但是,当时光学观测所能达到的分辨率不算太高,其他观测手段尚未发展起来,人们通过光学观测和红移测量测不出双星绕共同质心旋转的现象。而这些正是确定是否为双星的最基本物质特征之一。

    近些年,天文学家用可见光波段对冷星光谱进行的高精度视向速度测量证明,不少共生星的冷星有环绕它和热星的公共质心运行的轨道运动,这有利于说明共生星是双星。人们还通过具有高的空间分辨率的射电波段进行探测,查明了许多共生星的星云包层结构图,并认为有些共生星上存在“双极流”现象。现在,大多数天文学家都认为,共生星可能是由一个低温的红巨星或红超巨星和一个具有极高温度的看不见的极小的热星,以及环绕在它们周围的公共热星云包层组成。它是一种处于恒星演化晚期阶段的天体。

    有的天文学家对共生星现象提出了这样一种理论模型:共生星中的低温巨星或超巨星体积不断膨胀,其物质不断外溢,并被邻近的高温矮星吸积,形成一个巨大的圆盘,即所谓的“吸积盘”。吸积过程中产生强烈的冲击波和高温。由于它们距离我们太远,我们区分不出它们是两个恒星,而看起来像热星云包在一冷星的外围。

    有的共生星属于类新星。类新星是一种经常爆发的恒星。所谓爆发是指恒星由于某种突然发生的十分激烈的物理过程而导致能量大量释放和星的亮度骤增许多倍的现象。仙女座Z型星是这类星中比较典型的,这是由一个冷的巨星和一个热的矮星外包激发态星云组成的双星系统,经常爆发,爆发时亮度可增大数十倍。它具有低温吸收线和高温发射线并存的典型的共生星光谱特征。

    天文学家指出,对共生星亮度变化的监视有重要意义。通过不间断的监视可以了解其变化的周期性,有没有爆发,从而有助于揭开共生星之谜,这对恒星物理和恒星演化的研究都有重要的意义。但要彻底揭开这个谜看来还需要付出许多艰苦的努力。

    银河系最古老的恒星

    “大爆炸”后宇宙经历了什么事情?

    一颗刚刚在银河系发现的原始恒星可以为苦苦追问的天文学家提供线索,它的年龄约为132亿年,几乎与宇宙同龄,成为已知的最长寿的恒星。一个国际研究小组利用世界上分辨率最高的欧洲南方天文台的VLT望远镜捕获了这颗遥远的恒星,并将其编号为HE1523-0901。从它的年龄上看,应该是诞生于银河系的初始阶段,那时银河系最终的螺旋形状还未形成,而年龄仅为46亿年的太阳系更是远未出现。

    就像其他的原始恒星一样,HE1523中仅包含少数几种比氢和氦质量重的化学元素,其中就有两种放射性金属元素——钍和铀,其半衰期分别为140亿年和47亿年。科学家通过分析望远镜收集到的光谱数据确定了钍和铀的精确含量,并进一步推算出了HE1523的年龄。这种技术与考古使用的放射性碳年代测定法类似,只不过天文学家需要测定的时间跨度更大。

    在HE1523上的钍和铀可能来自于另一颗演化到超新星爆发阶段、走向衰亡的更古老的恒星。天文学家普遍认可的宇宙的年龄为100亿年~150亿年,这颗恒星的发现有助于了解宇宙形成早期的历史信息。

    虽然科学家能借助设在南半球的一个望远镜看到HE1523,但还不能确定它的距离究竟有多远。根据光谱分析,作为一颗恒星,它已经步入老年,成为一颗中心向内收缩、外壳却朝外膨胀的红巨星。

    尽管HE1523目前暂时攫取了“最古老恒星”的称号,不过科学家认为还有很多资格更老的恒星没有被发现。科学家认为,经过对它化学成分的测定,这颗恒星具备了某些原始的金属特性,但有些恒星比它的特性更原始。

    根据宇宙理论,大爆炸发生后几亿年中,宇宙中基本上是均匀分布的氢和氦,以铁为代表的重元素都是在恒星内部的核聚变反应中形成的,第一代恒星里的重元素很少。第一代恒星死亡后,新生的恒星会从其遗骸中继承一些重元素,因而重元素含量更多。

    科学家认为,宇宙“第一世代星”形成于“大爆炸”后3000万~1.5亿年间,它们都是异常耀眼的庞然大物,质量至少是太阳的200倍。不过,它们燃烧非常迅速,只存在了几亿年就逐渐形成了黑洞或者爆炸成为超新星。

    近来,科学家又发现位于长蛇座方向的一颗恒星可能是迄今为止发现的最古老的恒星。该恒星距离地球1500~4000光年,接近太阳系,亮度等级为13.5级,表面温度比太阳高,为61807摄氏度。从表面温度等可以推测出它的质量约为太阳的70%。

    研究人员通过频谱分析,测出了该恒星中各元素的含量。结果发现,其中铁的含量只有太阳的二十五万分之一,比迄今为止重元素含量最少的恒星还要低40%。宇宙在大爆炸后开始膨胀,最初诞生的所谓“第一世代星”只含有氢、氦等轻元素,而没有以铁为代表的重元素。因此含重元素非常少的恒星,一般认为是在宇宙初期形成的。

    据研究人员测算,该星已有130多亿岁,估计是“第一世代星”中残存下来的质量较小的一颗,或许也可能是第一世代星爆发后生成的第二世代星。

    随着科技的发展,人类会发现更多宇宙的奥秘。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架