惊人大发现-物理大发现
首页 上一章 目录 下一章 书架
    一、阿基米德定律的发现

    现在人们常听到“尤里卡”一词,20世纪90年代初法国总统密特朗提出过“尤里卡”计划,美国最大的太空计划也称作“尤里卡计划”。“尤里卡”是什么意思呢?“尤里卡”是希腊语的音译,中文意思是“我找到了!”

    这样一句普普通通的话被现代高科技用作代称,是因为它和古代希腊一位著名科学家连在一起的。这位伟大的科学家就是阿基米德(Archimedes,约公元前287~前212)。阿基米德是古希腊数学和力学方面最伟大的人物之一,也是真正有创见的古希腊科学家中的最后一个人。

    他是古希腊物理学家和数学家,静力学和流体静力学的奠基人,是从实验观测推导数学定律的先驱。恩格斯在《自然辩证法》一书中赞誉他是后古典时期才开始的对科学进行精确的和有系统研究的代表人物之一。

    约公元前287阿基米德生于西西里岛著名的文化古城叙拉古(今意大利锡拉库萨)。他的父亲是天文学家和数学家。阿基米德11岁时,被父亲按照当时的惯例送到当时的世界文化学术中心亚历山大里亚城王家学校去学习。学习期间阿基米德对数学、力学和天文学发生了浓厚的兴趣。在他学习天文学时,发明了用水力推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象。为解决用尼罗河水灌溉土地的难题,他发明了圆筒状的螺旋扬水器,后人称之为“阿基米德螺旋”。

    公元前240年,他回叙拉古后,受到了国王亥厄洛的赏识,成为国王的顾问,帮助国王解决了生产实践、军事技术和日常生活中的许多实际问题。

    阿基米德有一句名言:“给我一个支点,我可以撬起整个地球。”这句话至少有两个值得注意的地方。第一,阿基米德认为地球和月亮星星一样是圆球状的;第二,他从理论上掌握了杠杆原理。其实,阿基米德已经以丰富想像力把杠杆原理运用到实际问题上了。

    后来,这话传到了国王的耳朵里。国王为了考验阿基米德的才能,让他把一条刚刚造好的船用简便的方法推下水去。于是阿基米德便设计了一套巨大的杠杆和滑轮机械,借助杠杆原理只要用很小的力量,就可以使很重的物体运动起来。他把一切都做好了以后,将一条绳子的末端交给国王。国王拉了一下绳子,船体竟真的有了轻微的移动。就这样,这条沉重的大船由国王亲自送下了水。全城的人像着魔般观看这一奇迹,国王立即发出告示:“从此以后,无论阿基米德说什么,都要相信他。”

    阿基米德的著作很多,如《螺线》、《论抛物线形的求积法》、《论球和圆柱》、《论浮体》、《论平面图形的平衡》、《圆的度量》、《论锥体和球体》、《沙的计算》等。据现在所知,他失传的著作有《天球仪的制造》、《论杠杆》、《支持》、《原理》和《反射光学》等。在他死后过了差不多二千年之后的1670年,英国牛津出版了《阿基米德遗著全集》。

    经历了这么多世纪而保留下来的阿基米德的著作,就全部收在这部全集中了。阿基米德的著作是古代精确科学所达到的顶峰。无论在数学领域还是在力学领域,他都是伟大的,而且,他也和其他许多杰出的学者一样,在他们令人惊异的漫不经心的时候,会把人类天才的真正伟大的发现和引得他周围所有的人发笑的荒谬滑稽的狂举妄动结合起来。

    他沉溺于科学的思索中,以至于完全忘记他是在什么地方,忘记吃饭、睡觉和休息。他在洗澡时,能长时间沉思默想地用手指往自己涂满泥皂(从沼泽底取出的淤泥,古希腊人用作肥皂)的身上画着各种各样的图形,只有强制才能使他摆脱这种入迷的状态。

    国王亥厄洛是一个勇敢善战的人。有一次打了胜仗,为了庆祝胜利,他决定要献给神一顶王冠,于是下令找来了一个高明的金匠来制作。国王的会计官给了金匠必需的金子,不久王冠制成了,它玲珑剔透,金光闪闪,国王非常满意。

    但是,人们私下传说金匠并没有把全部金子用到王冠上,而是掺进了一部分银子。国王听了,也起了疑心。他把金冠称一下,和交给金匠的金子一样重,颜色也黄澄澄的,看不出掺进了什么。如果为鉴别真假打碎这个精致的王冠,又觉得可惜。于是他决定让阿基米德来检验。

    阿基米德接受了这个任务,回到家里左思右想,一直没想出好办法来。他茶不思,饭不想,整天焦躁不安。阿基米德思考问题非常专注,如同着了魔。让他吃饭,他好像丝毫没听见,仍然继续在火盆灰里画他的图形。她妻子须时时看着他,否则他即使在用油擦身时(古希腊贵族中流行的促进卫生和健康的一种方法),也会呆坐着用油在自己的身上画图案而忘记原来要做的事。有一次,他带着满脑子问题在洗澡。澡盆里装满了水,阿基米德慢慢把身子沉了进去。“哗啦——哗啦”,水不断地溢出来。同时,他觉得自己变轻了,入水越深,这种感觉越明显。以前,谁也没有思索过这个现象的意义。现在,阿基米德一心在寻找解决问题的方法,突然间他一下子从澡盆溢水的现象中受到启发。他意识到从盆子里溢出来的水就等于人体进入水中的体积,如果在容器里装满水,取一块和王冠一样重的纯金,把它与王冠同时放入两个充满水的容器里,如果它们溢出来的水一样多,王冠就一定是纯金的,否则就是掺了银。想到这里,阿基米德忘记了自己在洗澡,猛然跳出澡盆,光着身子跑出来,一边大声喊着:“尤里卡!尤里卡!”一边向街上跑,完全不顾赤身裸体、令人难堪的样子,穿过全城,奔向叙拉古王亥厄洛,去把自己的发现告诉他。街上的人们看着他光着身子高喊着跑出来,都以为他疯了。

    阿基米德首先测出王冠的重量,然后准备了和王冠一样重的一块纯金和一块纯银,还有一个装满水的容器。阿基米德把纯金块慢慢沉入容器,算出溢出的水量,这些水的体积就是纯金块的体积。再次装满水后,他又把纯银块沉入装满水的容器,于是又得到了纯银块的体积。

    当然,银块的体积要比金块大。最后,他又把王冠放入装满水的容器,根据溢出的水量测出了王冠的体积。阿基米德把王冠的体积和纯金块与纯银块的体积加以比较,发现王冠的体积比纯金块的体积要大,比纯银块的体积要小,这就证明了王冠不是用纯金制成的,而是用金银混合后制作的。根据测出的结果,他还计算出有多少黄金被换成了白银,终于揭开了王冠之谜。

    他对金匠说了自己的测试过程,金匠只好承认了自己的罪行。

    其实,阿基米德利用的是流体静力学的最基本原理,但在他那个时代人们根本不懂得“比重”这个概念,更不懂得一个物体浸入液体以后,要利用它排开液体的重量。说阿基米德智慧过人也正是在这里。从此,一个被称作“阿基米德定律”的原理一直写到了今天的每一本物理学教科书中。

    阿基米德一生的发明和科学发现非常多,他发现圆柱体积和其内接球体的体积之比(这个比例为3∶2);他还用内接和外切多边形的方法来测量圆周,逐渐增加多边形的边数,使其逐渐与圆周长相接近。这个渐进的方法证明:圆周长与直径之比,大于31071,小于31171。这是数学上相当重要的方法——用有理数逼近无理数,叫做“无穷逼近”。

    阿基米德口头上虽然看不起他那些机械发明,称它是几何学上的小玩意儿。但他在机械方面的这些发明给人们带来了相当大的实用价值。大约是他在亚历山大里亚的时候,埃及人请他帮助处理尼罗河河水排灌,他们要他提供一种能使水均衡分配的方法。结果阿基米德发明了一种水螺旋。这种水螺旋大概是一种管子绕成螺旋形,放在水里绕着轴旋转,水便从管中不断流出来。

    阿基米德还利用空闲时间造了一些圆球,模仿日月及五大行星(水、火、金、土、木星)的运动,制好后,利用水来带动其旋转。他造得非常准确,可以把日食月食都运转出来。这是世界上最早的天象仪。

    阿基米德进入暮年时,新兴起的罗马帝国进攻叙拉古。当时罗马军队已将整个城市包围。看到祖国面临灭亡的危险,阿基米德决心尽自己的全力来拯救祖国。他制造出一种类似现代起重机一样的机械,他用这种机械把罗马的战船抓起来,悬在空中,然后再猛地抛向水面使之沉入海底,或者越过城墙将这些船抓回城里,让叙拉古的士兵把敌人杀死。他还造了一种石弩,把大块石头抛向罗马军队和战船,将敌人砸得叫苦连天。还有一种难以置信的传说是,阿基米德曾让许多人手执凹面镜会聚阳光,烧毁了罗马军队的木制战舰。

    阿基米德运用他的机械,差不多只他一个人就将敌人挡在城外。有时连一根绳子抛出城外,也要将罗马人吓得四散奔逃。罗马军队没有办法攻破城池,便改变策略,变强攻为久困长围。叙拉古被围困了整整三年,城中的一切都消耗尽了,没有办法再坚持下去。公元前212年,叙拉古终于向罗马投降了,罗马军队迅即占领了整个西西里岛。当罗马士兵冲进叙拉古的时候,阿基米德还在专心致志地研究他的问题,似乎并没有理会到战争的恐怖,也没有听到罗马士兵进城的喊声。直到一个士兵的脚踏乱了他在地上画的图,阿基米德才抬起头来向着他喊:“喂,你弄坏了我的图,赶快走开!”结果,他的喊声惹恼了那个无知的士兵,阿基米德就这样被杀害了。

    牛顿发现万有引力定律

    凡是学过物理的人都知道万有引力定律,而且知道这个定律是伟大的科学家牛顿发现的。

    那么,牛顿究竟是如何发现万有引力定律的呢?

    行星绕着太阳转

    1543年,在自然科学史上发生了一件大事,哥白尼发表了他的日心说。哥白尼指出,地球是一颗普通的行星,与其他行星一样,是围绕着太阳旋转的。从此,被宗教神学奉为经典的亚里士多德——托勒密的地心说动摇了。

    后来,开普勒又发展了哥白尼的日心说,他发现了行星运动的三定律,指出行星不是绕着太阳做匀速圆周运动的,而是沿着椭圆形轨道运行的。

    人们自然会提出这样一个问题:庞大的地球为什么会不知疲倦地绕着太阳旋转呢?

    17世纪,伽利略的惯性定律已普遍为人们所接受。伽利略通过实验证明,当物体不受力的时候,将保持静止或匀速直线运动,当受到力的作用时,就会改变速度或运动方向。

    于是,人们猜测,一定是有一种力,迫使行星不断地改变方向和速度,使它们不停地绕着太阳旋转。

    那时候,人们知道的力除了机械力之外,还有一种是磁力,磁石能够穿越空间把周围的铁屑吸引过来。所以人们首先想到了天体间相互作用的力是磁力。

    以研究磁学著称的英国物理学家吉尔伯特提出,太阳和行星之间存在一种类似磁力的引力在起作用,正是这种力使行星绕太阳旋转。他还设想,地球是一个大磁石,地心产生的引力就是这块大磁石作用于周围物体的力。

    法国哲学家、物理学家笛卡尔提出了以太说。他认为宇宙间充满了肉眼看不见的以太,在太阳、地球等聚集体周围的以太,围绕着聚集体形成旋涡似的运动,旋涡吸引着四周的物体向旋涡中心运动。

    荷兰物理学家惠更斯是笛卡尔以太旋涡说的信奉者。他做过一个实验,在一只盛满水的大碗中搅起一个旋涡,于是,碗内的卵石就被拉到了碗正中的旋涡中心来。

    惠更斯在研究摆的运动中,还发现物体沿圆周运动,需要一种向心力,就像我们在绳子一端拴上一个石子,然后拉着它的另一端让石子做圆周运动时,手通过绳子给了石子一个向心力一样,行星绕着太阳运行,也受到一种向心力的作用。惠更斯还推导出了向心力公式。

    法国天文学家布里阿德在1645年甚至提出了引力与距离平方成反比的思想。

    尽管许多科学家已不同程度地揣测到了万有引力的作用,但是没有一个人对万有引力定律做出精确的科学论证,真正完成这项工作的是牛顿。

    天降大任

    好像是“老天爷”有意安排似的,就在近代力学的奠基者伽利略1642年去世的这一年,一个继承他的事业,把经典力学推向最高峰的科学家诞生了,他就是牛顿。

    牛顿出生在英国林肯郡伍尔索普村一个普通农户家,他的母亲和祖母以几个月前刚去世的他的父亲的名字——伊萨克·牛顿为这个新生的男孩取名。

    牛顿从小与那些喜欢打打闹闹的男孩子不大合得来,他喜欢安静地思考问题,爱好发明,手工做得特别好,他制作的风车、风筝、日晷滴漏都十分精巧,因此,大家都称他作“小巧匠”。

    中学,牛顿进入离家十多公里的格兰赛姆皇家学校,寄宿在药剂师克拉克家中。当时的药房就像一个小小的化学实验室,牛顿在这里学到了许多化学知识,萌发了对科学的热爱。

    14岁时,牛顿的家境每况日下,不得不中途辍学,回家务农。幸亏格兰赛姆的校长和他的舅父都很看重牛顿的天才,认为他应该继续深造,在他们的再三劝说下,牛顿的母亲才让他复学。

    1661年,牛顿以减费生的名义考上了著名的剑桥大学的三一学院。所谓减费生就相当于现在的半工半读,靠给学院的教授、研究员打工获得奖学金。

    牛顿入学后的第二年,三一学院设立了卢卡斯讲座,专门讲授自然科学知识。这个讲座的第一任教授是皇家学会会员、博学多才的数学家巴罗。牛顿把巴罗看作是对他一生帮助最大的恩师。是他把牛顿引向了近代自然科学,特别是光学和数学。巴罗对他的这个得意门生非常欣赏甚至崇敬,他常说:“我对数学虽略有造诣,但与牛顿相比,只能算个小孩。”后来,巴罗主动把卢卡斯讲座的教授职位让给了牛顿,使刚刚26岁的牛顿成为教授。

    1665年到1667年,英国发生了可怕的瘟疫,仅伦敦一地,1665年夏就有3万人死于瘟疫。剑桥大学不得不停课,大家都分散到了人口比较稀少的乡下,牛顿也回到了他的家乡伍尔索普村避难。

    在伍尔索普的这两年,是牛顿一生中创造力最旺盛的时期。牛顿自己曾说过,他的许多重大研究的基本思想,都是在这两年中形成的,以后不过是使这些思想加以发展、完善。正是在这两年间,他发现了微积分法、白色光的组成,还有著名的万有引力定律。

    苹果落地的启示

    据牛顿晚年的密友回忆,牛顿曾多次对他们讲过,是苹果落地引发了他对万有引力的思考。

    一天,牛顿坐在一棵苹果树下对引力问题进行思考。突然“扑通”一声,一个苹果从树上落到了他的脚旁。苹果为什么不向上,也不向旁边而总是垂直地落在地面上呢?牛顿陷入了沉思。

    苹果落地是重力的结果,也即地球对苹果吸引力的结果。牛顿发现,一个物体的重量不论在地面上还是在高山顶上,都相差不是很大,可见地球引力威力之大。他设想,重力可以延伸到很远很远,穿越太空,到达月球,把月亮往地球上吸引。

    那么月亮为什么不会落到地球上呢?牛顿根据抛物体运动,画了一张画,例如有一个人站在一座高山上,用不同速度水平地抛出一个物体,抛出物体的速度越小,物体落地点离山脚越近,速度越大,落地点离山脚越远。当速度大到一定程度时,它就不再落回地面上了,而是绕着地球旋转。月亮的情形就是这样,它以1000米/秒的速度运行,所以不会落在地球上,成了地球的卫星。

    牛顿画的这张图使人们不禁想到,假如追溯是谁最早提出人造卫星的设想的话,那么牛顿还可算是老祖宗呢。

    牛顿首先选择了地球和月亮的关系开始研究万有引力,因为月球的轨道是圆的,计算起来也比较方便。

    牛顿由开普勒的第三定律和圆周运动向心加速度公式,得出了引力大小与行星质量成正比,与它们之间的距离成反比。这就是万有引力定律。

    牛顿算出月亮加速度约为0.27厘米/秒2,而苹果落地的重力加速度是980厘米/秒2,约是月球加速度的3600倍,而月球与地球间的距离约为地球半径的60倍,这就证明了,让苹果落地的力和使月球保持在它的轨道上的力,都是地球的重力。

    不过,当时牛顿并没有公布他的发现,也许他看到了要真正解决这个问题还有许多难点没有解决,这就为牛顿与胡克对发现万有引力的争论埋下了伏笔。牛顿真正公布万有引力定律,是在十几年以后的1684年。

    牛顿和胡克的科学竞赛

    在牛顿提出万有引力时,还有一些科学家也产生了和牛顿类似的设想,其中有一位科学家就是胡克。他既是牛顿的朋友,又是论敌,在光的波动说与粒子说上他们二人发生过激烈的争论。

    胡克也是一位杰出的科学家,他是胡克定律、细胞的发现者,在天文学、医学、物理学等方面有多项发明和发现。

    胡克相信引力和磁力很相似。由于吉尔伯特已用实验证明了磁力随物体距离变化而变化,胡克就想寻找引力随距离变化的规律。他在1662年~1666年曾做过实验,把一物体放入深井测重量,再放到高山顶上测重量,进行比较,由于仪器精度限制,没有获得结果。

    1664年,胡克研究了彗星的轨道,指出彗星轨道在靠近太阳时是弯曲的,这是太阳引力造成的。胡克还聪明地看到,物体沿圆形轨道运行有两个分量,一个惯性分量,一个向心分量,惯性分量沿曲线的切线方向作直线运动,向心分量则拉物体偏离直线轨道。1679年,他曾把这种方法介绍给牛顿,并且在给牛顿的信中还提出引力与距离平方成反比。不过这只是定性的想法,没有严格的定量证明。牛顿没有给他回信。

    胡克是英国皇家学会会员。英国皇家学会有一个惯例,每星期三下午,学者们常聚集在一家咖啡馆自由交谈。1684年初的一个星期三下午,胡克与年轻的天文学家哈雷及皇家学会创始人之一、圣堡罗教堂和格林威治天文台的设计人、建筑学家雷安聚在一起,探讨着行星的运动。

    他们三个人取得一致见解,都认为行星通过一种力被太阳吸引,这种力与行星至太阳距离的平方成反比,他们也都认为开普勒的行星运行三定律是正确的,那么现在的关键是如何根据引力与距离的关系来证明行星运动轨道是椭圆形的。

    雷安宣布,谁要是能够给出证明,他就奖励谁。胡克当即表示,他可以给出证明。可是,几个月过去了,胡克却迟迟拿不出证明。

    到了8月,哈雷等得不耐烦了。他听说牛顿也在研究这一问题,而牛顿已是当时有名的数学家,于是哈雷便去登门拜访牛顿。

    哈雷问牛顿:“假如一个行星受到一个和距离成反比的力的吸引,那它应当是以怎样的曲线运动呢?”牛顿不假思索地回答:“椭圆。”哈雷又惊又喜,他问牛顿:“你是怎么知道的?

    ”牛顿漫不经心地说:“我以前计算过。”哈雷要求看看他的计算。牛顿找了一会儿,没有找着,于是许下诺言:“我再计算一次,然后把结果寄给你。”

    1684年11月,牛顿把椭圆轨道计算寄给了哈雷,哈雷立即意识到这份论文的重要意义,他兴冲冲再次来到剑桥大学拜访牛顿。这时牛顿已写出《论物体运动》的小册子,哈雷说服牛顿公布他的研究成果,并以这本小册子为基础,再写一本书。

    在哈雷的热情鼓励和敦促下,牛顿开始了他的不朽著作《自然哲学的数学原理》的写作。牛顿陷入极度的冥思苦想之中,连对自己吃了饭没有也记不清楚,有时,衣服只穿了一半就一整天失神地坐在床沿上。他极少离开房间,只有以卢卡斯教授身份讲课时才离开。牛顿只要有一小时不看书就认为是浪费了光阴。他很少在夜里二三点前睡觉,常常在凌晨四五点才上床休息,一天只睡四五个小时。

    1686年4月,牛顿完成了《自然哲学的数学原理》第一卷。这本书原定以皇家学会的费用出版,但因未筹措到足够的资金,印刷被推迟了。哈雷决定自己出钱支付印刷费用。

    在书付印前,胡克以曾向牛顿提示过平方反比定律为由,向牛顿提出异议。其实他也高度评价牛顿的成就,只是希望在其著作中承认自己的贡献。经过哈雷调停,这场风波才算平息了。

    这部奠定了现代物理学基础的经典著作《自然哲学的数学原理》于1687年夏正式出版,它分为三卷。牛顿首先确定了质量、动量、惯性和力的基本概念,在概括和总结前人研究成果的基础上,通过自己的观测和实验,提出了运动三定律:惯性定律、第二运动定律、作用与反作用定律。这三条定律和万有引力定律一起共同构成了宏伟壮丽的力学大厦的主要支柱。

    在这部书中,牛顿从数学上论证了万有引力定律,指出在万有引力作用下,物体运动轨迹有3种,当行星最初速度不很大、离太阳不很远时,是椭圆轨道,当最初离太阳很远或速度很大时,就是抛物线轨道或双曲线轨道,这样的物体仅仅在太阳附近出现一次,以后便永远消失了,偶尔到太阳系作客的彗星就是这种轨道。

    牛顿还用太阳引力与月球引力解释了地球上的潮汐运动。

    在发现万有引力的这场科学竞赛中,牛顿把所有的对手都远远抛在了后边,这是因为他在科学思想与科学方法上比其他人都高出一筹。他有丰富的想像力,从苹果落地联想到月球受重力的影响。他善于将错综复杂的自然现象进行简化,例如在有太阳、行星、卫星组成的太阳系中,引力作用很复杂,牛顿分别考虑日——地、月——地关系,并把天体作为没有体积的质点来计算。他发展了伽利略的实验——数学方法,先建立物理和数学模型,然后进行数学推导,得出结论,再经受实践的考验。同时他掌握有当时最先进的数学方法——他发明的微积分法,别的人或由于思路不对头,或因为数学上的障碍都没有获得成功。

    万有引力定律的胜利

    在牛顿发现万有引力定律后不久,天文学研究所取得的一个个成就,惊人地证明了万有引力定律的正确性。

    在证实万有引力定律方面,哈雷又立了大功。

    哈雷是一个对彗星很有研究的天文学家。拖着长长尾巴、出没不定的彗星一向让人感到神秘莫测,人们对它们的了解很少。哈雷注意到1531年、1607年、1682年出现过的三颗彗星轨道基本上是重合的,因此,他大胆猜想,这出现在不同时期的三颗彗星其实是一颗彗星,它的周期大约是76年。哈雷还根据万有引力定律,计算出了这颗彗星的长椭圆轨道,并预言它将在1758年在地球附近出现。哈雷还对另外24颗彗星的轨道进行了计算。

    1758年,哈雷预言的这颗彗星没有出现,1759年它果然出现了,整个欧洲为之轰动,万有引力定律经受住了实践的考验。

    哈雷本人没有看到这次彗星的出现,他那时已经去世了。为了纪念哈雷对彗星研究作出的贡献,这颗彗星就被命名为哈雷彗星。

    海王星的发现是万有引力定律取得的最辉煌的一次胜利。

    1781年,英国天文学家赫歇耳发现了天王星。半个多世纪以来的观测表明,天王星的实际轨道与用万有引力计算出来的轨道不大一致,是什么原因呢?难道万有引力定律错了吗?

    英国剑桥大学的大学生亚当斯坚信,天王星轨道的不规则性不是万有引力定律失灵,恰恰是其他行星的万有引力引起的。他利用万有引力定律和对天王星的观察资料,反过来推算这颗未知行星的轨道。

    亚当斯把他经过两年多艰苦计算的结果寄给了格林威治天文台台长艾利,但艾利不相信“小人物”的工作,把它扔在一旁。

    1846年,法国巴黎天文台的青年天文学家勒维烈也应用万有引力定律,独立的计算出这颗新星的位置,他把结果告诉了德国天文台助理员加勒。

    加勒按照勒维烈指示的方位,用望远镜寻找,9月23日,果然发现了一颗暗淡的新行星,这就是海王星,其位差不超过一度。

    后来,人们又发现海王星的轨道也不规则,用同样的办法,1930年,人们又发现了海王星以外的新行星——冥王星。

    天狼伴星的发现是又一生动事例。1834年,贝塞尔观察天狼星时,发现它的运动轨迹是波浪形的,经过他用万有引力定律进行了详细的计算,他预言天狼星旁边应当有一颗天狼伴星,正是这颗星的振动造成天狼星轨道的波浪形。在他死后16年的1862年,美国克拉克把新制成的18英寸望远镜对准天狼星时,果然发现了这颗天狼伴星。

    经过天文学上这一系列事实的检验,万有引力定律得到了人们普遍的承认,成为指导人们进行科学研究的有力武器。

    测出万有引力的大小

    既然任何两个物体间都存在着万有引力,为什么我们走近桌子、房子等物体时,感觉不到这个力呢?原因是这个力实在太小了,以致我们的感觉器官无法感觉出来。牛顿还有许多科学家都设计过许多实验,想测出两个物体间的万有引力,但是都没有成功。

    那么,能不能根据万有引力公式F=GM1M2R2计算出这两个物体间的万有引力来呢?也不行,因为当时还没有测出万有引力常数G的值。

    这个问题是在牛顿之后一百多年的1798年,由英国物理学家、化学家卡文迪什解决的。

    卡文迪什从十几岁起就开始想测出万有引力常数来。有一次,他得知一个叫米歇尔的科学家用一根石英丝吊住一条磁铁,然后用另一块磁铁吸引它,石英磁被扭转了,这样就测出了磁力的大小。

    卡文迪什用一根细长棒,两端各安一个小铅球,做成哑铃状的东西,用石英丝把“哑铃”吊起来,然后用两个大铅球靠近这两个小铅球,想测出引力的大小,结果什么也没测出来。

    正当他为解决这个问题而苦恼时,他看到几个小孩手拿小镜子来反射太阳光,互相照着玩。

    镜面偏转一个很小角度,远处光点的位置就会偏转很大角度。

    卡文迪什灵机一动,他把一面小镜子固定在石英丝上,让光点反射到一个刻度尺上,这样,只要石英丝有极小的扭动,反射光就会在刻度尺上显示出来。

    这次,他再用两个大铅球去靠近两个小铅球,果然成功了,石英丝扭转的角度显示了出来。

    这就是著名的扭丝实验。他又用其他办法测出了石英丝扭转同一角度所需要的力,轻球与重球之间的万有引力就被测出来了。这个力真小,两个1公斤的铅球在相距10厘米时,它们之间的引力只有十亿分之一公斤。

    测出了引力,根据万有引力公式就可以算出万有引力常数了。卡文迪什得到的引力常数G=6.71×10-8达因·厘米2/克2,与现代测定的数据G=6.67×10-8达因·厘米2/克2非常接近。有了万有引力常数,用万有引力公式就可以算出地球的质量了。因为地球对已知物体的吸引力,就是物体的重力,地球和物体的距离,就是地球的半径,卡文迪什成了第一个称地球重量的人。他称出了我们脚下的地球重量为5.976×1024公斤,也就是大约60万亿亿吨!

    站在巨人的肩膀上

    牛顿发现了万有引力定律,创立了经典力学体系,在科学史上作出了划时代的贡献。牛顿的名字,被人们看作是近代自然科学的象征。他在数学、光学、热学等研究中也都取得了卓著的成就。这一切与牛顿的天才、勤奋分不开,但不能完全归功于他个人的聪明才智,正像牛顿自己所说的那样:“如果说我看得远,那是因为我站在了巨人的肩上。”

    爱因斯坦在评论牛顿时也说过:牛顿之所以成为这样的人物,还有比他的天才更重要的东西,那就是命运使他处在人类理智的历史转折点上。

    在力学与天文学方面,由于伽利略、开普勒、胡克、惠更斯等人的工作,牛顿才有可能建筑起他宏伟壮丽的力学大厦,他们为他提供了建筑的材料。同样是一个牛顿,对化学进行了长时间的大量研究,却没有取得什么突出成就,这是因为当时这方面的道路还未开辟。牛顿的力学是经历了许多人的研究才得以诞生的,它是集体智慧的结晶,牛顿正是这个人类理智历史转折点上众多科学家的代表。

    牛顿在临终之前,总结自己一生所走过的道路时说:“我不知道在世人眼里我是什么样的人,但是在我自己看来,我不过像是在海边玩耍的孩子,为不时拣到一块比较光滑的卵石、一只比较漂亮的贝壳而喜悦,而真理的大海在我面前,一点也没有被发现。”

    这当然是牛顿的谦虚之说。但是有一点是确实的,牛顿力学并不是力学的尽头,对万有引力的认识也没有到头。

    牛顿自己也承认,他并不清楚引力的本质是什么,产生引力的根源是什么。这就为后代的科学家们留下了一系列有待进一步探索的问题。

    20世纪,爱因斯坦发现了相对论,对牛顿力学体系发出了挑战。

    爱因斯坦在广义相对论中提出,不存在瞬间超距传递的引力,所谓的引力只不过是时空的一种特性,物体的质量决定了时空的弯曲程度,从而使行星沿着弯曲的空间运行。

    广义相对论得到了许多实验的验证。这是不是说牛顿的力学错了,不能用了呢?不是的。在低速运动中,牛顿的力学和相对论并不矛盾,仍是适用的。今天,从机械设计到宇宙飞行,都还是在用牛顿力学体系,只有当速度大到可以和光速相比拟时,才必须抛弃牛顿体系,改用相对论。

    迄今为止,人们还没有发现与广义相对论相矛盾的实验,但是,相对论是否就到头了,就没有问题了呢?不是。像广义相对论所预言的引力波,至今人们还未发现,人们还不能最后断定,广义相对论就是引力之谜的谜底。

    人类对引力的认识还远未穷尽,还有许多问题等待着今天的和未来的科学家们去探索。

    发现燃烧的秘密

    因为有了火,在万物不断进化的竞争中,人类终于脱颖而出成了自然界的精灵。然而物质为什么会产生燃烧?火到底是什么?这些疑问始终在人们头脑中萦回缠绕。

    一直到了18世纪下半叶,法国塞纳河畔的一位化学家终于揭开了火的神秘面纱,建立了科学的燃烧理论。他就是安图瓦·拉瓦锡(Antoine-Laurent Lavoisier,1743~1794),法国化学家,1774年发现氧气,1783年揭示“水是氢和氧的化合物”,其一生为推翻支配化学发展长达百年之久的燃素说努力,为现代化学奠定了基础,被称为“近代化学之父”。

    1743年8月26日,拉瓦锡生于巴黎。11岁进入当时巴黎的名牌学校——马札兰学校,受到了良好的启蒙教育。少年的拉瓦锡爱上了自然科学,在校时一直热心钻研自然科学问题,并逐渐加深了这方面的兴趣。1763年获法学学士学位,并取得律师开业证书。21岁时转向自然科学研究,他拜法国著名科学家为师,刻苦学习了数学、天文学、地质矿物学、植物学和化学等,打下了深厚的基础。

    拉瓦锡起初从事地质学研究,后来,他又转而学习化学。从一开始,拉瓦锡就以精细缜密、一丝不苟的态度,吃苦耐劳、勤于思考的精神对待科学研究。这些性格上的优秀品质使他攻破了许多科学难关,为他成为出色的科学大师奠定了基础。

    18世纪中叶,法国城镇的市政建设还是相当落后的,城市街道的照明主要采用燃油灯。每天傍晚需要一个人拿着长杆去点燃,第二天清晨再由人去熄灭,既麻烦又不经济。昏暗的街灯常常使飞奔的马车与行人相撞,频繁发生交通事故。1765年,法国科学院以巨额奖金征集一种使街灯既明亮又经济的设计方案。

    拉瓦锡通过大量实验,提交了自己的设计方案。虽然没有获得奖金,但他的设计方案构思精巧,论证清晰合理,因而被特别授予优秀设计方案的金质奖章。隆重的颁奖仪式和激动人心的科学研究成绩,使拉瓦锡坚定了终生从事科学探索的信念。

    这一年,他当选为巴黎科学院候补院士。

    他最早的化学论文是对石膏的研究,发表在1768年《巴黎科学院院报》上。他指出,石膏是硫酸和石灰形成的化合物,加热时会放出水蒸气。

    1775年,拉瓦锡出任皇家火药局局长,火药局里有一个相当好的实验室,拉瓦锡的大量研究工作都是在这个实验室里完成的。

    拉瓦锡从事的科学研究是以研究街灯的形式开始的,这使拉瓦锡接触到了燃烧及其现象问题。

    早在拉瓦锡之前的一百多年,人们已经提出了一种关于燃烧的理论,认为燃烧是“火素”放出的过程。当燃烧时火焰是向上飞腾离去的,其中夹杂的许多火星就是火素,也叫做“燃素”。许多物质如木材、纸张、煤炭和油类中都含有大量燃素,一旦燃烧就集中释放形式猛烈的火焰。事后剩余的灰烬远远少于可燃物燃烧之前的重量,这就是燃素放出的结果。

    当时人们把这种观点叫做“燃素说”。它统治化学界长达一百多年之久。然而,社会生产技术和科学研究的日益深入,使燃素说暴露出许多破绽,例如燃烧木材和煤炭之类的东西,重量呈减少的状态;燃烧锡或铅等金属非但重量没有减少,反而出现增重现象。这就迫使人们重新审视燃烧理论。

    拉瓦锡详尽搜集了前人关于燃烧的研究成果,加以认真地审视和分析,经过长时间的研究,拉瓦锡发现了以前人们忽视的一个问题:加热燃烧金属增重的原因是吸收了空气所致。

    接着拉瓦锡在三四年的时间内,连续进行了大量的关于燃烧和气体方面的实验。他用金属锡、铅和水银作实验,再用非金属硫磺、磷作实验,还用有机物作实验。他逐渐把注意力集中在空气中有某种助燃气体能够与金属结合使其增重上,这究竟是什么样的物质呢?他在努力探索着。

    1774年4月,拉瓦锡发表了论文,用实验论证了金属能与空气中的某种物质相结合的事实。

    但他始终苦于找不到将它分离出来的方法。

    拉瓦锡家境富有,比科学界的多数同事的状况优越得多。妻子玛丽乐善好施,拉瓦锡也毫不吝啬,因此,拉瓦锡家成了法国甚至欧洲著名的“科学沙龙”,法国的科学家愿意到这里聚会畅谈,外国科学友人也乐于来这里造访逗留。

    1774年10月,在拉瓦锡家的“科学沙龙”上,英国化学家J.普利斯特里介绍了自己做的一个实验。原来,普利斯特里用口径很大的聚光火镜加热汞灰(即氧化汞)时,搜集到一种助燃作用极强的气体,他将这种气体取名叫“脱燃素空气”。这种气体使蜡烛燃烧得更明亮,还能帮助呼吸。这就是我们现在说的氧气。但是普利斯特里一直坚信燃素说,所以他虽然发现氧气却没有揭开燃烧的奥秘。

    拉瓦锡重复了普利斯特利的实验,得到了相同的结果。拉瓦锡并不相信燃素说,所以他认为这种气体是一种元素。难能可贵的是,拉瓦锡又用制得的气体逆向重新和汞作用,结果又生成了汞灰。现在,拉瓦锡全明白了。燃烧就是可燃物通过水分解得到两种气体,再将这两种气体燃烧又得到水。

    实验使他弄清了空气是由氧气和氮气组成的原理。火的产生就是可燃性物质与空气中氧元素相结合的结果。从此,确立了科学的燃烧理论,推翻了燃素说的错误。1777年,拉瓦锡正式把这种气体命名为oxygene(中译名“氧”),含义是“酸的元素”。同年,拉瓦锡向巴黎科学院提出了一篇报告《燃烧概论》,阐明了燃烧作用的氧化学说,要点为:

    ①燃烧时放出光和热;②只有在氧存在时,物质才会燃烧;③空气是由两种成分组成的,物质在空气中燃烧时,吸收了空气中的氧,因此重量增加,物质所增加的重量恰恰就是它所吸收氧的重量;④一般的可燃物质(非金属)燃烧后通常变为酸,氧是酸的本原,一切酸中都含有氧。金属煅烧后变为煅灰,它们是金属的氧化物。

    他还通过精确的定量实验,证明物质虽然在一系列化学反应中改变了状态,但参与反应的物质的总量在反应前后都是相同的。于是拉瓦锡用实验证明了化学反应中的质量守恒定律。

    虽然在今天看来,拉瓦锡的一些结论是错误的,比如:他认为凡是含有氧的化合物都是酸性化合物,例如硫酸、硝酸都含有氧,由此推断盐酸也含有氧,只是结合得牢固,因此不能从盐酸中分出氧——但是,他的实践仍然是革命性的。拉瓦锡的氧化学说彻底地推翻了燃素说,揭开了燃烧的奥秘,他创立了燃烧理论,为人类作出了巨大贡献,使化学开始蓬勃地发展起来。许多科学家盛赞拉瓦锡为“近代化学之父”,将拉瓦锡伟大的化学实践视为推翻“燃素说”的一场“化学革命”。

    1794年5月8日,作为近代化学奠基人之一的拉瓦锡于巴黎去世。

    电磁感应现象的发现

    我们的日常生活离不开电,从电灯、电话、电报到收音机、电视机,从工厂中轰鸣的机器到农田中的抽水机,从军事上用的雷达到科研教学用的电子计算机,处处都要用到电,没有电,就没有现代文明社会。

    那么,电是怎样被发现的?人类又是怎样学会利用电的呢?

    初识静电

    人类最早看到的电便是天空中的雷鸣闪电了。不过雷电究竟是什么,古人并不清楚。在我国有“雷公电母”的传说,在西方则有“上帝之火”之说,雷电被蒙上了一层神秘的色彩。

    人类最早获得的电是摩擦产生的静电。公元前6 世纪,古希腊人在佩戴首饰时就发现,用布或皮毛摩擦过的琥珀,能吸附灰尘、线头等轻小物体。

    我国古代人民也早就发现了摩擦起电现象。汉代著名学者王充在“论衡”一书中有“顿牟掇芥”的记载,“顿牟”即琥珀,“掇芥”就是拾起轻小的物体。

    第一个比较系统地对电和磁进行研究的是16世纪英国科学家、曾担任过英国女王宫廷医生的吉尔伯特。吉尔伯特发现,地球本身是一个巨大的磁体,并用一个大磁石模拟地球做过著名的“小地球实验”。他还发现,不仅琥珀可以吸引轻小物体,玻璃、硫磺、树脂、水晶、宝石等经过摩擦,也都能吸引轻小物体,并发明了可以检验物体是否带电的验电器。是他第一个应用“电”这个词。英语的“电”就是从希腊语“琥珀”一词派生出来的。

    17世纪,德国马德堡市市长、物理学家格里凯制造出了一种能够摩擦起电的机器,它是用布摩擦一个可以连续转动的硫磺球,这样就可以得到大量的电荷了。后来,人们又制造出各种各样的静电起电器。

    但是,那时候,人们好不容易起得的电,在空气中要不了多久就逐渐消失了。每次用电都要重新用起电器起电,很不方便。能不能把这些电保存起来呢?

    一个叫马森布洛克的荷兰物理学家真的把电装到玻璃瓶里贮存起来了。

    1745年,马森布洛克做了一个实验,在一个盛有水的玻璃瓶上塞上一个软木塞,软木塞上插了一枚铁钉,用铜丝把铁钉和起电器连接起来。

    马森布洛克让他的助手拿着玻璃瓶,自己使劲摇动起电器,他的助手不小心用手碰到了铁钉,猛然遭到一阵强烈打击,不由得大喊起来。

    马森布洛克和他的助手掉换了位置,用手去摸铁钉,果然他的手臂和身体像遭到雷击一样,有一种无法形容的恐怖感觉。这说明电荷被存到瓶子中了,人接触到瓶子,因此受到电击。

    马森布洛克是荷兰莱顿大学的教授,这个能贮电的瓶子就得名莱顿瓶。

    莱顿瓶实际上就是一个电容器。后来,莱顿瓶经过改进,里边不再装水,而是在玻璃瓶内外贴上锡箔,用起来就更方便了。

    有了莱顿瓶,人们可以方便地进行各种电学实验,因此,它很快就传开了。魔术师们也因此增添了一个新节目,他们带着起电器和莱顿瓶到处周游,为人们做触电麻酥酥感觉的表演。

    揭开雷电之谜

    许多科学家都注意到了,莱顿瓶放电时,会产生电火花和劈啪声,与天空中的雷鸣闪电很相似。那么,摩擦起电得到的电与天上的雷电是不是一样的电呢?

    在美国费城,有一个科学家叫富兰克林,他也在思考这个问题。有一次,他的夫人丽达不小心碰到了莱顿瓶,突然闪出一团电火,随着一声轰响,丽达被击倒在地,经过抢救才脱险。

    这件事给了富兰克林深刻的印象,他决心要把天上的雷电“捉”下来,看看它们和莱顿瓶的电是不是一样。

    1752年7月的一个雷雨天,46岁的富兰克林带着他的儿子,把一个用绸子做的大风筝放到了天空。这个风筝的顶部安了一根尖细的铁丝,牵引风筝的麻绳末端拴了一个铜钥匙,钥匙塞入莱顿瓶中间。

    风筝和麻绳被雨水淋湿,变成导电的了。当带着雷电的云来到风筝上面时,尖细的铁丝立即从云中吸取电,绳子松散的纤维向四周竖了起来,在富兰克林的手指和钥匙间发出蓝白色的小火花,他感到一阵麻,闪电被引到莱顿瓶中了。

    富兰克林发现,天电和普通电一样可以使莱顿瓶充电,一样可以点燃酒精和进行其他电学实验,也就是说,天上的电和地上的电性质是完全一样的。“上帝之火”的迷信被击垮了。

    不过,这个实验实在是太危险了。俄国科学家利赫曼曾设计了一个装有金属尖杆的检雷器,想测出云中有没有电,结果一阵雷电下来,将他当场击毙。

    为研究科学,利赫曼献出了宝贵的生命。

    根据对雷电的实验和尖端放电的原理,富兰克林发明了避雷针,使千千万万的房屋建筑免遭雷击。避雷针很快在全世界普及开了。

    可笑的是,英王乔治三世因为富兰克林是美国独立战争中的风云人物,下令要把尖端避雷针改成球形的。幸亏英国皇家学会的科学家拒绝了他这一愚蠢的命令。

    “动物电”引出的发明

    摩擦起的电和贮存在莱顿瓶中的电,当放电时,瞬间就消失了,不能形成持续的电流,我们把这种电叫做静电。静电的作用远不如动电,事实上,我们今天所用的电,绝大多数都是可以在导线中流动的持续电流。只有在发现这种电流之后,人类对电的运用才有了突飞猛进的发展。

    那么,电流是怎样被发现的呢?

    1786年,在意大利有一位解剖学家叫伽伐尼,正在做解剖青蛙的实验。他把一只刚刚解剖完的青蛙腿用铜钩子挂在一个铁架子上,无意中使蛙腿碰到了铁架子,蛙腿竟奇怪地抽搐了几下。

    细心的伽伐尼没有放过这个偶然的发现。他找来一根铁筷子,把蛙腿和铁架子连接起来,蛙腿上的肌肉同样也发生了强烈的抽搐,就像他过去曾经做过的用莱顿瓶或起电器给青蛙腿通电的情况一样。显然,蛙腿是受到电的刺激而抽搐的。那么电又是从哪里来的呢?

    伽伐尼选择不同时间、不同条件进行实验。他发现,无论是在晴天还是雷雨天,在室外还是封闭的屋子里,重复这个实验,蛙腿都会收缩。因此,他认为这个电不可能是外来电,而是动物本身所有的。两种不同的金属与之接触,就把这种电激发出来了。他把这种电叫“动物电”。

    伽伐尼的“动物电”观点得到了许多人的支持。因为人们早就知道,海洋中有一些鱼,像电鳗、电鲶等都能放电,人们自然联想到,别的动物体内也可能贮存这种电。

    但也有一些科学家不同意伽伐尼的观点,其中有一位就是意大利物理学家伏打。

    伏打认为,引起蛙腿抽动的是来自铜钩和铁架两种不同金属接触产生的电流。他把两种不同的金属导线连接起来,用它们的两端去接触青蛙,蛙腿就会抽动。他还用它们的两端去接触自己的舌头,立即感到有电的刺激,他把这种电叫金属电。

    为了论证自己的看法,伏打又做了大量实验。他花了整整3年时间,把各种金属搭配成一对一对进行实验,编制出了各种金属材料接触生电的序列,其次序是锌、锡、铅、铜、铁、铂、银、金……这就是著名的伏打序列,只要按这个序列将前边的金属与后边的金属搭配起来,前者就带正电,后者就带负电。

    伏打还发现,形成电流的另一个必要条件是必须把金属放在导电的溶液中去,在青蛙实验中,蛙腿就起到了溶液的作用。

    根据这个原理,1800年,伏打把数十个圆形的银片、锌片以及用食盐水浸泡过的厚纸片按银片、纸片、锌片、纸片的顺序不断叠起来,制成了伏打电堆,当把电堆的两端用金属导线连接起来时,电路中立刻出现了持续的电流。

    伏打电堆的发明,使人类第一次获得了持续的稳定的电流,从此电学又进入了一个新的迅速发展的阶段。

    那么,伽伐尼提出的动物电对不对呢?伏打的异议促使伽伐尼进行了更严密的实验。他不用铜钩、铁架,而是剥出蛙腿的一条神经,一头绑在另一条腿上,一条与脊椎接触,结果蛙腿仍会抽搐。实践证明,动物会产生电流的结论是正确的,生物体内确实存在生物电。

    想不到一个青蛙腿的实验,引出了生物电和伏打电池两项重大的发现和发明。

    电能转化为磁

    人们不仅早就发现了电现象,而且也早就发现了磁现象。但是长期以来,人们一直没有把电和磁联系起来,就连对电和磁分别很有研究的吉尔伯特也认为,电和磁是两种截然不同的现象。

    19世纪初,随着对电学的深入研究,电和磁的关系开始引起了人们的注意。法国物理学家阿拉果曾记载过,一场雷电使船上的指南针方向改变了;富兰克林曾发现,莱顿瓶中的电可以使铁针磁化。在矢志搞清电和磁的联系的科学家中,有一位就是丹麦物理学家奥斯特。

    奥斯特深受德国哲学家康德、谢林自然哲学的影响,相信光、电、磁等各种自然力具有统一性。还在1807年他在哥本哈根大学担任物理、化学教授时,就已开始着手研究电和磁之间的联系。

    根据电流通过直径小的导线会发热的现象,奥斯特推测,通电的导线直径进一步缩小,便会发光,再缩小就会产生磁效应,他做了许多实验,但一直没有发现电能够转化为磁。

    失败并没有使奥斯特灰心。他分析,以往人们都是在电流方向上寻找电流的磁效应,莫非电流对磁体的作用根本不是纵向的,而是一种横向的力?他的脑海中闪出一个问号。

    1820年4月的一天,奥斯特在给学员们作电学演示实验。他在一个伽伐尼电池的两极间安了一根铂丝,铂丝的下方有一枚小磁针。当他把电路接通的时候,突然发现小磁针微微地抖动,转到了与铂丝垂直的位置上。奥斯特一下愣住了,简直不敢相信自己的眼睛,多少年来梦寐以求的现象终于出现了!

    此后三个月,奥斯特一连做了60多个实验,他把磁针放在导线的上下左右,改变导线中电流的方向,观察电流对磁针作用的方向;把磁针放在离导线不同的距离上,看电流对磁针作用的大小;在导线与磁针之间放上玻璃、金属、石头、木块、水等,考察它们对这一作用的影响……1820年7月21日,奥斯特发表了题为《关于磁针上电流碰撞的实验》的论文,向科学界宣布了电流的磁效应。他指出,当电流通过导线时,在导线周围会产生像磁铁那样的磁力;这个电流产生的磁力不是沿着电流方向而是沿着垂直于导线的方向传播的。

    奥斯特的发现看来似乎是偶然的,但正如巴斯德所说:“在观察的领域中,机遇只偏爱那种有准备的头脑。”

    奥斯特的发现轰动了整个学术界,许多科学家纷纷投入了对电与磁的研究,其中最快做出反应并取得重要成就的就是法国物理学家安培。

    安培在得知这一消息后,第二天就重复了奥斯特的实验。7天后,向法国科学院提交了他的第一篇论文,提出了圆形电流产生磁性的可能性,并发现了磁针转动方向与电流方向的关系服从右手定则。

    安培发展了奥斯特的实验,不仅研究了电流对磁体的作用,还研究了电流对电流的作用。他发现两条平行的通电导线,当电流方向相同时互相吸引,当电流方向相反时互相排斥。

    为了解释奥斯特效应,安培把磁的本质简化为电流,创立了分子电流假说。他提出在原子、分子内部,存在一种叫分子电流的环形电流,正是分子电流的存在,使每一个物质微粒都成为小磁体。在没有磁化的物体内部,所有分子电流的方向是杂乱无章的,它们形成的小磁体也杂乱无章地排列,因此对外不显示磁性。磁化的时候,在外磁场的作用下,每个分子电流产生的磁场方向变得相同,对外就显示出磁的作用。安培把电磁现象上升到一个新的理论高度。

    奥斯特的发现拉开了现代电磁学的序幕。2000多年来一直被人们认为毫不相干的电与磁,原来是互相联系的;过去,人们一直以为两个物体之间相互作用的力的方向,在两个物体的连线上,无论万有引力定律还是库仑定律都是如此,而现在电磁作用力却不是这样。由此引发了物理学上的一场革命,导致了场论的诞生。而第一个提出电磁场概念的,就是被人们称作电学之父的法拉第。

    磁能生电

    法拉第是著名的化学家、物理学家。他于1791年诞生在英国伦敦郊区的一个铁匠家庭。由于家庭贫困,法拉第只上过两年小学,12岁时就到一个书商兼订书匠的家里当学徒。这使他有机会接触到许多书籍。

    下班后,当同伴们纷纷离开工场回家时,法拉第却舍不得离去,坐在窗前如饥似渴地读书。

    他最喜爱的是自然科学书籍,那里边告诉他许多他从来不知道的有趣知识。法拉第还省吃俭用,用自己一点微薄的工钱,买药品做化学实验。

    当时伦敦经常举办科学演讲会,一个先令一张的入场券对法拉第来说相当昂贵,但法拉第仍想方设法去听讲。他认真做笔记,并把笔记誊清,配上插图,作为自己的教科书。

    有一次,他有机会听了著名的化学家戴维的演讲,这使他更加向往献身科学事业了。他给戴维写了一封信,并附上了他整理好的听讲记录。这个勤奋好学的年轻人深深打动了戴维,终于,他成了戴维实验室的助手。

    靠勤奋与才华,法拉第很快在科坛上崭露头角。他帮助戴维完成了矿井安全灯的发明,发现了氯、二氧化硫硫酸、氨等气体的液化,发现了苯。

    奥斯特发现电流的磁效应传到英国后,1821年,英国的一家有名望的杂志《哲学年鉴》邀请戴维写一篇文章,评述电磁学一年来的发展。戴维把这项任务交给了法拉第。

    在收集资料的过程中,激发起法拉第对电磁现象研究的巨大热情。他敏锐地意识到奥斯特发现的重要性,法拉第这样评价说:“它猛然打开了一个科学领域的大门,那里过去是一片漆黑,如今充满了光明。”法拉第同奥斯特一样,受到谢林哲学的影响,深信电、磁、光、热是相互联系的。现在,奥斯特证明了电能生磁,摆在眼前的拦路大山就是如何用实验证明磁能生电了。1821年,法拉第在日记中记下了他的光辉思想:“磁能转化为电”,并开始了这方面的艰难探索。

    开始,法拉第也像当时许多投入这一研究的科学家一样,简单地认为用强磁场靠近的导线,导线中就会产生电流,或者在一根导线中通入强大的电流,靠近导线中就会产生稳定的电流。

    但是,这些实验全都以毫无结果而告终。

    历经10年的失败、试验、再失败、再试验,1831年8月29日,法拉第终于取得了突破性的进展。他在一个圆形的铁棒上绕了两个线圈,一个线圈接电源,一个线圈的下方平行地放了一个小磁针。当接通电源的一瞬间,他发现小磁针摆动了一下又回到原来的位置,断开电源时,小磁针又摆动了一下。

    法拉第抓住这个一瞬间出现的现象穷追不舍。小磁针的摆动说明另一个线圈也出现电流了,但是它们只在电源接通、断开的瞬间才有,这又是为什么呢?法拉第终于明白了,在电源接通或断开的瞬间,电流是变化的,它们产生的磁场也是变化的,也就是说,只有变化的磁场才能产生感应电流,问题的关键在于变化!

    法拉第十分激动,他又设计了几十个实验,结果证明了,只要穿过闭合回路中的磁通量发生变化,回路中就会产生感应电流,这就是著名的电磁感应定律。

    磁能够生电,法拉第10年前写在日记上的预言实现了。电磁感应的发现,为发电机的发明奠定了理论基础。现代发电机就是根据这一原理工作的。法拉第本人根据电磁感应现象,制造出世界上第一台直流发电机。那是在一个U形磁铁的南北极之间,插入一个可以旋转的圆形铜盘,导线的一端缠绕在铜盘的轴心上,另一端用电刷与铜盘边缘相接触。当铜盘旋转时,在铜盘与导线组成的回路中就产生了电流。尽管这个发电机非常简陋,发出的电还不及现在的玩具发电机,但它第一次把机械能转化成了电能,为人类打开了电气化的大门。

    为了证实用各种不同方法产生的电在本质上都是一样的,法拉第仔细研究了电解液中的化学现象。1834年总结出了法拉第电解定律。

    他还探索了电磁和光的关系,历经多次失败,百折不挠,终于在1845年观察到了磁使偏振光旋转的现象,磁力越强,偏转角度越大,这就是有名的磁光效应。法拉第在人类历史上第一次证实了磁对光的作用,播下了电、磁、光统一的种子。

    法拉第的另一重大贡献,则是创立了场论,引入了电场和磁场的概念。

    在牛顿的经典力学中,两个物体之间的作用力如万有引力的传递既不需要媒介,也不需要时间,也就是说是超距离作用的,并且遵从与距离的平方成反比的关系,就连在库仑定律中,静电荷之间的作用也是这样的。

    法拉第在大量电磁实验的基础上,提出了完全不同的崭新概念。他认为带电体、磁体周围会产生电场或磁场,电作用或磁作用是通过电场或磁场来传递的,而不是超距作用。法拉第还以惊人的想像力,引入磁力线、电力线来表示场的强弱变化。他曾做过一个实验,在一张纸上撒上一些铁粉,纸的下边放上一个磁棒,当他轻轻抖动纸片时,铁粉就集合成了许多线,清楚地呈现出磁场的力线。

    与法拉第同时探索电磁感应现象的科学家还有不少。美国物理学家亨利也独立地发现了电磁感应现象。1827年,他用一个纱包铜线在一个铁芯上绕了两层,然后通电。结果铁芯中仅3公斤的铁片居然能吸引300公斤的物体。他以此为开端,发现了自感现象。

    不过,无论从研究的规模、深入的程度、取得的成果来看,没有哪一个科学家比得上法拉第。因此人们把发现电磁感应定律的主要功绩归功于法拉第,并把电磁感应定律称为法拉第电磁感应定律。

    法拉第取得了如此伟大的成就,但他从不计较名誉、地位,更不看重钱财。他拒绝了许多制造商的高薪聘请,谢绝了大家提名他为皇家学会会长和维多利亚女皇准备授予他的爵位,终身在皇家学院实验室从事科学研究。

    爱因斯坦曾高度评价法拉第,说他在电学中的地位就相当于伽利略在力学中的地位,法拉第奠定了电磁学的实验基础。

    电磁波的预言

    正像许多新思想、新理论刚刚诞生之时不为人们所理解一样,法拉第提出的场的概念也迟迟不为人们所接受。特别是由于法拉第没有受过系统的正规教育,数学水平不够高,因此他对电磁场的研究,只能停留在对力线的描述上,不能把它变成精确的定量的理论。

    是一位年轻的物理学家把法拉第萌发的新思想用精确的数学形式表示出来,并把它发展成为完整的电磁场理论,他就是麦克斯韦。

    麦克斯韦也是英国人,诞生在1831年,比法拉第晚出世40年。他的父亲是一个律师,但主要兴趣却是制作各种机械和研究科学问题。他父亲对科学的爱好对麦克斯韦产生了很大的影响。麦克斯韦从小喜爱数学,14岁时就在爱丁堡皇家学会发表了画椭圆曲线的论文,16岁考入爱丁堡大学学习物理,19岁时转入剑桥大学。他因设计著名的色陀螺而轰动科学界,获得皇家学会奖章,24岁就成为大学教授。

    早在剑桥大学求学时,麦克斯韦就被法拉第的崭新观念所吸引,并立志要把它用数学形式表达出来。

    1856年,25岁的麦克斯韦写出了《论法拉第的力线》的论文,引入一种新的矢量函数来描述电磁场,法拉第看到后大加赞扬。

    1860年,麦克斯韦登门拜访了年近七旬的法拉第,他们一见如故,谈得十分投机。麦克斯韦崇敬地请法拉第指出他论文的缺点,法拉第非常诚恳地说:“你不应该停留在用数学来解释我的观点,而应该突破它。”麦克斯韦受到极大的鼓舞。

    当时在电磁学领域已经建立了四大定律,它们是库仑定律、高斯定律、法拉第定律、安培定律。麦克斯韦深入研究了法拉第提出的场,以此为起点,综合各家之长,终于提出了著名的麦克斯韦方程组,它由四个方程式组成,几乎包括了已有的全部电磁学的规律,其构思深刻奥妙,表达简洁明了,以致后人赞誉它是“神仙写出来的”。

    在这里麦克斯韦发展了法拉第的电磁感应定律。他指出电磁感应的本质是变化的磁场产生电场,不论周围有无闭合回路存在。同时他也发展了电流的磁效应,指出不仅电流能够产生磁场,任何变化的电场都要在周围空间产生磁场。

    这样,麦克斯韦就为我们勾画出一幅完美的图像:变化的电场在它周围产生变化的磁场,变化的磁场又在周围产生变化的电场,变化的电场再产生变化的磁场……如此不断交替产生,就构成了统一的电磁场。而一圈圈变化的电场和磁场向四周不断传播出去,就形成了电磁波。

    麦克斯韦不仅预言了电磁波的存在,而且计算出电磁波在真空中的传播速度是3×108米/秒,与光的速度相同,从而进一步预言了光也是电磁波,是一种可以引起人们视觉的电磁波。

    青出于蓝而胜于蓝。麦克斯韦站在巨人肩上,终于建成了电磁理论的宏伟大厦。正像牛顿继哥白尼、伽利略、开普勒等人之后,创立了经典力学,完成了物理学的第一次革命,麦克斯韦继承库仑、欧姆、安培和法拉第之后,创立了经典电磁学理论,完成了物理学上的第二次革命。

    麦克斯韦在天文学、气体分子运动理论、热力学方面也都作出了卓越的贡献。

    捕捉电磁波

    尽管麦克斯韦用严密的数学论证了电磁波的存在,但是在人们心目中电磁波却是那样神秘莫测,既不像水波可以看得见,又不像声波可以听得见。那么,怎么才能证明电磁波真的存在,麦克斯韦的理论是正确的呢?

    麦克斯韦生前没有看到他的理论被证实,他积劳成疾,48岁就患癌症去世了。在麦克斯韦去世后的1887年,一个德国青年物理学家赫兹用实验证实了电磁波的存在。

    1878年,21岁的赫兹来到柏林大学攻读电学。他的导师亥姆霍兹是最早支持麦克斯韦的少数几个杰出科学家之一。亥姆霍兹建议柏林科学院悬赏征求证实电磁波的实验,同时鼓励他的学生赫兹去解决这个问题。

    赫兹也为麦克斯韦的理论所吸引,他欣然接受了导师的建议,从此几十年如一日,孜孜不倦地投入到寻找电磁波的研究中。

    要证明电磁波的存在,首先就要能够产生电磁波。很长一段时间,赫兹苦于找不到产生迅速变化的电磁场的办法。有一天,赫兹在实验室工作,他发现当把一个两端间留有很小间隙的弯成长方形的铜线接到感应线圈上做放电实验时,在间隙部位出现了一个来回迅速跳跃的小火花。赫兹立即意识到,这个跳动的小火花不正是可以产生变化的电场和磁场吗?

    那么又怎样接收电磁波呢?他百思不得其解。当他从各种设想又回到麦克斯韦的电磁理论时,突然顿悟,电磁波既然向四面八方传播,那么在它传播的空间的导线中不是应当产生电流吗?观察导线中有无电流应当是很容易的事情。

    赫兹开始实验了,他的装置很简单,两块锌板,每块锌板上连着一根端上装着铜球的铜棒,两个铜球离得很近,两根铜棒分别与高压感应线圈的两个电极相连,这就是他的电磁波发生器。在离发生器10米远的地方放着电磁波探测器,那是一个弯成环状、两端装有铜球的铜棒,两个铜球间的距离可以用螺旋调节。

    赫兹把门窗遮盖得严严实实,不让光线射进来,当他合上电源开关时,发射器的两个铜球间闪出耀眼的火花,发出劈劈啪啪的响声。但这不是赫兹要观察的目标。他紧张地调节着探测器的螺丝,让两个铜球越靠越近,突然,两个铜球的空隙间也跳跃着微弱的电火花,电磁波被捉住了。

    赫兹还进行了其他实验,证明了电磁波和光波一样,可以发生反射、折射,并且测出电磁波的速度和光速一样。

    1888年,赫兹在柏林科学院大厅向云集在那里的各国科学家发表了演说,明确指出光是一种电磁现象,并介绍了他的实验,顿时整个大厅里发出一片惊讶和赞叹声。

    在赫兹的实验之后,再也没有人怀疑电磁波的存在了。正像爱因斯坦说的:“在现代物理学家看来,电磁波正像他坐的椅子一样实在。”麦克斯韦的电磁理论从此为人们所接受。

    赫兹所创造的电磁波发射器和探测器,也就是后来无线电发射器和接收器的开端,他的实验拉开了人们运用无线电的序幕。

    电气时代的到来

    随着法拉第发现电磁感应现象、麦克斯韦完成电磁理论,新的技术、新的发明不断涌现。1832年,法国皮克西制成第一台旋转式交流发电机。1844年,美国莫尔斯发明有线电报。1860年,意大利巴奇诺奇发明直流电动机。1867年,德国西门子制成自激式直流发电机。1872年,德国阿尔特纳设计出第一台高效率直流发电机。1876年,英国贝尔和美国爱迪生发明电话。1879年,爱迪生和英国斯旺发明电灯。1895年,意大利马克尼和俄国波波夫发明无线电报……电力作为一种新能源登上了人类生活舞台,它为工业生产提供了方便、价廉、强大的新动力,带动了一系列新兴的产业的诞生,创造了比蒸汽时代大得多的生产力。电力不仅被用作工业动力,而且用于照明、通讯及人类生活的各个领域,它极大地改变了人类社会的面貌,推动了人类文明的进步。

    蒸汽机的发明使人类进入蒸汽时代,而电的利用使人类社会又跃入了一个崭新的时代——电气时代。

    电磁理论的发现

    英国剑桥大学的世界知名数学家霍普金斯教授连续几天来都感到很烦躁:接连几次到图书馆去借数学期刊和专著,都被人借走了。这些书刊很艰深,学生是不会借的。问过同事,也都说没有借。最后问到图书管理员,才知道被一名叫做詹姆斯·麦克斯韦(James Clerk Maxwell,1831~1879,伟大的英国物理学家,建立了电磁理论,将光、电、磁现象统一起来)的学生借走了。

    霍普金斯由烦闷转为惊异,他要去见见这个学生。来到学生宿舍,科学家特有的直觉使霍普金斯对这位学生产生了浓厚的兴趣,他正埋头于作业,笔记本摊了一桌子,教授想借而没有借到的书刊展开在桌子上。

    “小伙子,这些书不好啃呢,小心啃掉牙齿。”教授风趣地说。经过这次交谈,教授和学生成了忘年交。麦克斯韦的非凡才能引起了教授的重视。

    1831年6月13日,詹姆斯·麦克斯韦生于苏格兰古都爱丁堡。幼时随父乡居,在父亲的诱导下学习科学,不满10岁就随父到爱丁堡皇家科学院听演讲。9岁那年,母亲不幸得了重病,扔下小麦克斯韦撒手归西。从此以后,小麦克斯韦和父亲相依为命,度过了艰难困苦的少年时代。他自幼对数学、物理学产生了浓厚兴趣,尤其喜欢钻研数学。当麦克斯韦还不满15岁时,他写的一篇数学论文就发表在《爱丁堡皇家学会会报》上,并且获得了行家们的好评。

    这是一门数学和物理学相互交叉渗透的学科,运用数学理论来解决物理方面的问题。

    麦克斯韦16岁时进入爱丁堡大学,3年后转入剑桥大学投师霍普金斯教授门下研习数学。霍普金斯教授是剑桥的著名科学家,他学识渊博,功底深厚,培养过不少世界知名的学者、科学家,在科学技术上有多方面成就的威廉·汤姆逊(即著名的开氏温标的创始人开尔文勋爵)和著名数学家斯托克等人,都出自霍普金斯教授的门下。霍普金斯教授对麦克斯韦要求极其严格,对他进行了系统的训练。俗话说,名师出高徒。麦克斯韦的学习和科学研究进步很快,仅仅3年时间就掌握了当时欧洲所有先进的数学物理方法。

    1854年以优异成绩毕业于该校三一学院数学系,留校任职两年。一次,他阅读了法拉第的《电学的实际研究》一书,读着读着就被书中的奥秘给迷住了。它记录了法拉第一生从事电磁学研究的全部实验结果,其中也包含了法拉第深邃的思考。

    麦克斯韦受到这位电磁学先驱的深刻启示,日夜刻苦研读法拉第的著作,通过与法拉第著作的思想交流,麦克斯韦悟出了电磁力线思想的宝贵价值,同时也看到了法拉第定性表述电磁现象方面的弱点。初出茅庐的青年数学家麦克斯韦决心用数学定量表述来弥补这一缺陷。

    1855年,24岁的麦克斯韦发表了学术论文《论法拉第的“力线”》。这是麦克斯韦第一篇关于电磁学理论方面的论文,麦克斯韦向电磁学理论的纵深领域挺进。

    这年秋季,因公来到伦敦的麦克斯韦特意前来拜访法拉第,这是一次历史性的会见。年轻的物理学家恭敬地递上名片,连同他4年前发表的学术论文交给了仆人。过了一会儿,法拉第满脸笑容地走了出来。这时,这位电磁学实验大师已年届70岁,两鬓斑白,智慧的眼睛闪着和善的目光。虽然宾主二人年龄相差40多岁,在性情、爱好、志趣、特长等方面也迥然各异,但是在探索自然科学之谜上,他们却产生了共鸣。

    法拉第和麦克斯韦一见如故,很快就亲切热烈地交谈起来。这对奇妙的一老一少,彼此堪称天造地设、相得益彰。法拉第快活、和蔼,麦克斯韦严肃、机智。老师待人如一团温暖的火,学生处事像一把锋利的剑。麦克斯韦说话不善辞令,但一针见血;法拉第演讲娓娓动听,却主题鲜明。一个不很懂数学,另一个则应付自如。

    1856年,麦克斯韦到苏格兰阿伯丁的马里沙耳学院任自然哲学教授,两年后和院长的女儿K.

    M.杜瓦结婚。1860年向其母校爱丁堡大学申请自然哲学教授职位未成,同年秋季去伦敦任国王学院的自然哲学及天文学教授,并和M.法拉第时有往来。

    麦克斯韦最大的功绩是建立了电磁理论,将光、电、磁现象统一起来。1864年12月8日,麦克斯韦在英国皇家学会的集会上宣读了题为《电磁场的动力学理论》的重要论文,在这篇论文中,他为他的力学模型,找到了明确的电磁学依据,对前人和他自己的工作进行了概括,位移电流作为和电荷守恒定律相容的一个前提。在此基础上提出了联系着电荷、电流和电场、磁场的基本微分方程组。他用一组方程表示电磁场的连续性,另一组方程表示电磁场变化及其相互影响,使电磁学以优美的数学形式表达出来。这一方程组经过后人的整理和改写,成为经典电动力学主要基础。

    正是通过这样的数学推论,麦克斯韦预见了电磁波的存在:电磁场的变化以波的形式在空间传播。他还运用方程组推算出电磁波的速度和光速大体相同。

    按照麦克斯韦的理论,电磁波在真空中的传播速度,是仅仅通过电磁学的测量就能确定下来的一个恒量。测量的结果表明这一恒量和真空中的光速十分接近。在这种量值符合性的启发下,麦克斯韦提出了光的电磁理论,即认为光是频率介于某一范围之内的电磁波。这是光的波动学说的一种新形式,它避免了旧的光学理论中一些根本性的困难,而且在很大范围内得到了实验的证实。因此,尽管新理论也还有它自己的困难,但是这种理论的提出却被认为是人类在认识光的本性方面的一大进步。正是在这样的意义上,人们才说麦克斯韦把光学和电磁学“统一”起来了。这一发展被认为是在19世纪科学史上最伟大的综合之一。

    1865年他辞职回乡,专心治学和著述。1871年受聘为剑桥大学实验物理学教授,负责筹建该校的第一所物理学实验室——卡文迪许实验室,1874年建成后担任第一任主任。1873年,麦克斯韦出版了集电磁学大成的划时代著作《电磁学通论》,全面总结19世纪中叶以前对电磁学的研究成果,建立了完整的电磁理论体系。这是一部可与牛顿的《自然哲学的数学原理》

    、达尔文的《物种起源》相媲美的里程碑式的不朽名著。

    由于这部著作一般人读不懂,而且十几年间一直没有人证实电磁波的存在,所以许多物理学家怀疑麦氏的理论。

    1879年11月5日,麦克斯韦在剑桥逝世。他的功绩生前未受重视,直到1888年,即他逝世九年以后,物理学家赫兹通过一系列实验证实了电磁波的存在,人们开始惊羡麦克斯韦的天才预想。至此,由法拉第开创、麦克斯韦完成的电磁理论终于取得了决定性的胜利!

    六、相对论的发现

    一次不寻常的日全食观测

    1919年5月29日,发生了人类历史上一次不寻常的日全食观测。

    两支日食观测队,一支由天文学家爱丁顿带队,一支由天文学家克劳姆林带队,从英国出发,飘洋过海,分别来到了非洲西部的普林西比岛和南美的索布腊尔,他们严阵以待,等待着一个盼望了多年的庄严时刻的到来。

    中午,太阳一点点被月亮遮住了,天渐渐暗了下来。天文学家们用早已准备好的精密照相设备,抓紧302秒的日全食机会,一张接着一张紧张地拍照。不过,他们不是像通常那样拍摄日食时太阳的日珥、日冕的照片,而是拍摄太阳及其附近星星的照片。

    还在1911年,爱因斯坦根据相对论预言,由于太阳的引力场作用,星光在接近太阳表面时将发生偏转,1915年,他又更精确地把偏转角度更正为1.7秒角度。

    怎样才能检验爱因斯坦的预言呢?白天,阳光照耀,看不见星星,夜晚,星星出来了,太阳又下山了,只有在日全食时,才有可能看到紧挨着太阳的星光。现在这个时刻来了。如果观测的结果真的像爱因斯坦预言的那样的话,那么200多年以前,伟大的科学家牛顿所提出的万有引力定律就必须修正了,难怪科学家们如此激动。

    11月6日,英国皇家学会和皇家天文学会在伦敦举行联席会议,听取两支日食队的正式报告。他们的观测结果表明,星光在路过太阳附近时真的拐弯了,一个队的观测结果是偏转了1.61±0.30秒,另一个队的结果是偏转了1.98±0.12秒,与爱因斯坦的预言相当吻合。

    整个会场沸腾了。英国皇家学会会长、电子的发现者汤姆孙致词,他说:“爱因斯坦的相对论是人类思想史上最伟大的成就之一……这不是发现了一个孤岛,而是发现了新的科学思想的新大陆。”

    这一评价毫不过分。爱因斯坦的相对论结束了牛顿经典物理学的统治,开创了现代物理学的新纪元。它从根本上改变了人们对空间、时间和宇宙的认识。相对论已成为现代物理学的两大基石之一,对现代科学的发展产生了巨大的影响。

    爱因斯坦是怎样发现相对论的呢?

    物理学上空的两朵乌云

    19世纪末,在许多物理学家的眼中,物理学已发展到了登峰造极的地步,不会再有什么大的突破了。在迎来20世纪第一个春天时,久负盛名的物理学家、英国的开尔文爵士在他的《新年献辞》中就踌躇满志地宣布:“科学的大厦已经建成,后辈物理学家能做的仅仅是一些零星的修补工作”。

    不过,开尔文毕竟是一位有眼力的科学家,他指出:“在物理学晴朗上空的远处,还存在两朵令人不安的小小乌云。”他所指的两朵乌云与当时用经典物理学无法解释的两个实验有关,一个是黑体辐射实验,一个是迈克耳逊——莫雷实验。

    在开尔文的心目中,这两朵乌云很快就会散去,他完全没有料到,竟是这两朵小小的乌云酿成了物理学上的大革命,前一个促成了量子论的诞生,后一个迎来了相对论的问世。

    提起迈克尔逊——莫雷实验,我们还要从寻找神秘的以太谈起。

    以太这个词是古代希腊人创造的。他们认为天空和宇宙中充满着以太。随着元素说的兴起,以太说渐为人们所淡忘。

    17世纪,法国科学家笛卡尔把以太这个词引到了物理学中。他认为宇宙空间充满着以太,物体之间的相互作用就是通过以太为媒介传递的。

    光的波动学说的成功使以太说更加兴盛起来。声波要靠空气才能传播,水波要靠水来传播。

    太阳光穿过宇宙空间照到地球上也要靠媒质来传递,这个媒质就是以太。

    法拉第和麦克斯韦建立的电磁理论中又一次引入了以太,电磁波要靠以太来传递。

    那么以太究竟是什么样的呢?谁也没有见过。科学家们赋予了以太种种奇特的性质:它是无色、透明、静止的,充满整个宇宙空间;由于光波是一种横波,而只有固体媒质才能传播横波,因此以太必须是固态的;行星在以太中运行,没有受到任何影响,因此,以太是没有任何质量和摩擦阻力的……这些性质本身就是相互矛盾的,看来以太简直是太玄了。可是科学家们仍然不愿意放弃以太,不仅因为它是光和电磁波传播的媒质,而且因为它是牛顿绝对空间的化身。

    牛顿认为,存在一个与外界事物无关,永远相同和不动的绝对空间。宇宙万物包括太阳系、银河系等等都相对于这个绝对空间而运动。以太是静止的,充满了整个宇宙空间,它正是牛顿绝对空间的化身。

    物理学家们做了种种实验和天文观测,想要验证以太的存在,并确定它的属性,但是都没有能够得到确切的结论。

    迈克尔逊实验引起的风波

    1879年3月,在美国航海历书局进行合作研究的美国年轻物理学家迈克尔逊偶然看到了麦克斯韦写来的一封信。信中提到的测量地球相对以太运动的想法给了他很大启示。迈克尔逊想出一个巧妙的办法来测定地球相对于以太的运动:既然地球绕着太阳以每秒约30公里的速度运转,那么朝地球运动的方向和与它垂直方向同时各射出一束光,从离光源相同距离的反射体反射回来,前者走过的路程将比后者短一些,两束光相遇应当形成干涉条纹。迈克尔逊用他发明的干涉仪做了多次实验,始终没有看到他预期的干涉条纹。

    1887年,迈克尔逊在化学家莫雷的帮助下,进一步改进了实验装置,他们把干涉仪安装在一个很重的石板上,石板悬浮在水银液面上,仪器可以十分平滑地随意转动。这个仪器是那样灵敏,甚至可以测出植物每一分钟的生长量,一根条纹百分之一的移动变化。

    实验开始了,为了免除种种可能因素造成的误差,他们使光束射出的方向与地球运动的方向成各种角度,在一年中的各个季节、白天和黑夜的不同时间进行了许多观测,结果每一次都没有出现干涉条纹,也就是说,地球相对于以太的运动是零。

    实验的零结果公布后,在物理学界引起了震动,它表明了根本不存在以太。那么牛顿所说的绝对空间也不复存在,经典物理学面临着严重的危机。

    为了拯救岌岌可危的以太,以支撑行将倒塌的经典物理学大厦,物理学家们提出了各种各样的假说。

    爱尔兰物理学家斐兹杰惹提出了收缩说,认为当物体在以太中运动时,它的长度会在运动方向上发生收缩,这样迈克尔逊的仪器在指向地球方向时会缩短,正好抵消了互相垂直的两束光的光程差。

    荷兰物理学家洛仑兹不仅提出了收缩论,还推导出了后来相对论中使用的基本公式洛仑兹变换公式。不过洛仑兹是以以太这一绝对空间的存在为前提,为了弥补旧理论和新的实验事实之间的裂纹,他不得人为地提出了好几个假设。

    法国物理学家彭加勒更激进,他大声疾呼,应该建立一门崭新的力学,在这门力学中光速将成为一个不可逾越的障碍,物理定律对于洛仑兹变换应具有不变的形式。

    这一切表明产生狭义相对论的历史条件已经成熟了。洛仑兹、彭加勒已经走到了相对论的大门口,但是由于他们没有摆脱牛顿绝对时空观的束缚,因而没能叩开相对论的大门。

    1905年,一个默默无闻、既无名师指点,又不在专门研究机构工作的26岁的年青人打开了相对论的大门,他就是后来被人们誉为20世纪哥白尼、牛顿的伟大科学家爱因斯坦。

    爱因斯坦为什么能战胜许多物理学界的前辈而捷足先登呢?让我们循着他的成长道路看一看吧。

    另类学生

    爱因斯坦于1879年3月14日诞生在德国南部的一个古老小城乌尔姆。他的父母都是犹太人,父亲和叔父一起开了一家小工厂。

    爱因斯坦小时候不但不是一个神童,而且还被人看作是一个笨拙的、反应迟钝的孩子。他4岁才学会说话,小学时功课也不出色。有一次他的父亲问校长,这孩子长大应该选择什么职业,校长回答:“干什么都一样,反正他决不会有什么成就。”

    爱因斯坦的叔叔是一个精明的工程师,曾把毕达哥拉斯定理(勾股定理)告诉爱因斯坦。12岁的爱因斯坦虽然从没学过几何,但他苦思冥想,竟然独立地把这个两千多年前哲人提出的定理证明出来了,他第一次尝到了发现真理的快乐。

    中学时代,爱因斯坦的数学和物理知识远远超过了同年级的孩子们,其他各科却成绩平平。

    他特别讨厌德国中学那种把人当做机器、强迫训练的教学方式,他的许多知识都是靠家庭中自学学到的。有一个叫塔尔梅的大学生,非常喜爱这个长着棕色大眼睛的小弟弟,经常和他讨论问题,并借给他许多自然科学与哲学的书籍。爱因斯坦发现,在人类之外,有一个巨大的独立的世界存在着,它像一个永恒的谜,吸引着爱因斯坦去探索。

    17岁时,爱因斯坦进入了瑞士苏黎士联邦工业大学。他的兴趣由数学转向了物理学。他利用课余时间,阅读了当时的物理大师基尔霍夫、亥姆霍兹、赫兹、洛仑兹、麦克斯韦的主要著作,还学习了著名哲学家马赫、休谟、斯宾诺沙的著作,他们的怀疑批判精神深深影响了爱因斯坦的哲学思想。

    爱因斯坦不是一个循规蹈矩的好学生,他常惹得老师大发雷霆。一次上实验课,大家都在按部就班地操作,突然“砰”的一声响,爱因斯坦的手被炸伤了。原来,他又是把写有规定操作步骤的纸揉成一团塞在衣袋里,按照自己的想法去做。有的课,爱因斯坦认为不重要就不去听,而是自学他自己认为重要的东西。因此,他的物理老师韦伯曾批评他:“爱因斯坦,你绝顶聪明,可惜你有一个缺点,你不让人教你!”数学老师闵克夫斯基因他常缺课,骂他是“一条懒狗”。

    幸亏爱因斯坦有一个好朋友格罗斯曼,他与爱因斯坦的不修边幅相反,是一个兢兢业业的好学生,笔记记得非常详细。爱因斯坦靠借他的笔记,才应付了许多考试。

    奥林匹亚研究院院长

    尽管爱因斯坦才华横溢,成绩优异,但由于他是犹太人,更因为他的直率、不谙事故和独立性格,讨不到老师和权威们的欢心,因此他大学毕业就失业了。

    还是他的好朋友格罗斯曼帮助了他。格罗斯曼的父亲介绍他去伯尔尼专利局工作。在等待专利局位置空出来的一段时间,爱因斯坦不得不当家庭教师。

    1902年,爱因斯坦登了一则广告,招收听物理学的学生。在伯尔尼大学学哲学的索洛文找到爱因斯坦。他们一见如此,谈起哲学、物理学,是那样投机,早把教课、挣钱的事一古脑儿忘了。

    以后每天晚上,他们都聚在一起,读书、讨论和研究。后来另外两个年青人哈比希特和贝索也加入进来。他们轮流到各人家里聚会,有时也到一家叫奥林匹亚的小咖啡馆聚会,因此,开玩笑地把他们这个小团体叫奥林匹亚研究院,“院长”自然是学识超人的爱因斯坦。

    他们的活动往往从吃晚饭开始,一边吃着简单的食品,一边就开始闲谈马赫、斯宾诺沙、黎曼、彭加勒的著作,哲学、数学、物理学、文学无所不包。有时,一本书刚念不到一页,就展开了热烈的讨论。爱因斯坦讨论起来是那样专注,有一次朋友们为他准备了他早就想吃的鱼子酱,爱因斯坦一边吃,一边大谈牛顿的惯性定律,鱼子酱吃完了,同伴们问他刚才吃的是什么,爱因斯坦回答:“不知道呀。”当别人告诉他那是鱼子酱时,爱因斯坦好惋惜呀,连味都没有品出来。

    这样的活动持续了三年半。正是这种不同思想的碰撞、共振,引发出一系列创造性思维的火花,爱因斯坦的许多科学思想,都是在奥林匹亚研究院孕育和形成的。

    那时,爱因斯坦已在伯尔尼专利局担任三级技术员。对付专利局的工作,爱因斯坦的才能绰绰有余,他有许多时间可以驰骋在他所喜爱的物理学天地中。在伯尔尼的岁月,是爱因斯坦科学生涯中最富有创造性,成果也最多的几年。就在1905年3月到9月的短短半年中,爱因斯坦在量子论、分子运动论、相对论三个领域齐头并进,同时取得了重大突破。

    3月,他提出了光量子论,阐明了光电效应的理论,爱因斯坦1921年就是因此而获得诺贝尔物理奖。

    4月,发表《分子大小的测定方法》,5月完成了布朗运动理论的研究,从理论上解释了布朗运动,提出测定分子大小的新方法。

    6月,发表《论动体的电动力学》,正是这篇不到9000字的论文,宣告了狭义相对论的诞生。

    9月,提出质能转换公式,为40年后的原子能的利用开辟了道路。

    他的学生兰佐斯评论说,爱因斯坦一生理应获得5个诺贝尔奖,指的就是以上4项成果再加广义相对论。在这些成就中,影响最大的还是相对论。

    创立狭义相对论

    爱因斯坦建立狭义相对论依据了两个基本原理,一是相对性原理,即在任何惯性参考系中,所有的自然规律都相同;二是光速不变原理。

    早在17世纪,伽利略就发现了相对性原理。比如,在一个匀速行驶的火车上向上抛出一个小球,小球将垂直落地,与在地面上向空中抛出一个小球的情况一样,也就是说在没有受到外力作用的惯性系中,所有的力学定律都相同。伽利略还提出了伽利略变换,通过这一变换,不同惯性系描写力学规律的方程式都具有相同形式。

    可是,电磁学的发展向相对性原理发出了挑战,描写电磁运动的麦克斯韦方程,用伽利略变换去套,不再保持不变的形式。结论只能是麦克斯韦方程只适合于静止的以太坐标系。

    电磁学的实验事实与经典物理学的矛盾也深深困惑着爱因斯坦,难道真的存在一个特殊优越的以太坐标系吗?难道相对性原理对电磁规律就不普遍适用了吗?爱因斯坦的哲学思想使他坚信,世界不是杂乱无章的,而是简单的、和谐的、有规律的,应该可以找到一些规律,对世界加以统一的描写。

    爱因斯坦综观了当时有关以太和光速测定的实验,毅然否定了以太这个特殊优越坐标系的存在,确认相对性原理不仅对力学规律,而且对任何自然规律,包括电磁规律也是适用的,这就是狭义相对论的第一个原理。

    但是,要确定电磁规律满足相对性原理,就必须引出光速不变的原理,即光在真空中传播的速度与光源的速度无关,与观察者的速度也无关。这显然和经典力学相矛盾。在经典力学中,一个人站在以速度V0行驶的火车上,向着列车行进的方向开枪,子弹速度为V,那么地面上观察者看到的速度应是V0+V。何以解释光速与光源速度无关呢?这成了横在爱因斯坦前的一大难关,使他大伤脑筋。

    1905年暮春的一个夜晚,爱因斯坦正躺在床上,突然一个思想闪过他的脑海:“对于一个观测者来说是同时发生的事件,对另一个观测者不见得是同时。”他一骨碌从床上爬起来,抓住这个灵感不放,终于找到了解决问题的钥匙,那就是时间的相对性。

    爱因斯坦设想了这样一个实验,有一列匀速行驶的火车开进车站,当车头A′和车尾B′分别通过A柱和B柱时,有两道闪电击中了A柱和车头A′,B柱和车尾B′。那么怎么知道这两个闪电是不是同时发生的呢?如果站在AB(或A′B′)的中点,同时看到从A和B(或A′和B′)传来的光信号,那么这两道闪电就是同时发生的。对于站在站台AB中间的铁路工人来说,他看到两个光信号同时到达中点,因此,他说这两道闪电是同时发生的。可是对坐在火车中点的乘客来说,由于火车是从B开向A的,那么他将先看到A′闪电的光,后看到B′闪电的光,假如火车是以光速前进的话,那么他将永远也看不到B′闪电,因为B′闪电发出的光永远也追不上乘客。对乘客来说,这两个闪电不是同时发生的。我们把这个火车叫爱因斯坦火车。

    可见,同时性的概念是相对性的,每一个惯性系有它自己的同时时间。这是对牛顿绝对时间观念的大胆挑战。牛顿认为,世界上有一个绝对时间,它均匀的流逝着,与任何事物无关。

    全宇宙只有一个标准“时钟”,两个事件的发生时间与这个标准时钟比是同时的,这两个事件就是同时发生的。

    爱因斯坦正是从大家认为没有问题的“同时性”中看出了问题,以此为突破口,引入了全新的空间和时间观念,通过数学推导,推出洛仑兹变换,经这个变换,无论是力学方程还是麦克斯韦方程在不同惯性系中都可以保持形式不变了。狭义相对论建立了。

    几个重要的结论

    根据狭义相对论,爱因斯坦还得出了一系列重要的结论:

    1.一把高速运动的尺子与静止状态相比,在运动方向上缩短了。比如一列长100米的火车,以12光速前进,地面上的人就会发现它的长度只有85米。

    2.快速运动的钟,会走得慢了。比如一个乘高速宇宙飞船到太空旅行一年的人,回到地面时会比他的孪生兄弟年轻得多。

    钟慢尺缩效应被称为相对论的两个著名佯谬。的确,用常人眼光来看这两个结论简直不可思议,荒诞无稽。关键是因为我们生活在低速世界中,而爱因斯坦讲的是高速世界的情况。

    事实已为这两个结论做出了验证。1977年,欧洲原子核研究中心的一个小组发现,近光速飞行的μ介子寿命比静止的μ介子寿命长。还有两个美国人,把原子钟放到喷气飞机上,绕地球飞行一周后回到地面,与地面静止的原子钟相比,时钟变慢效应与相对论预言在10%精度内相符。

    狭义相对论还有两个重要结论:物体的质量会随着速度增加而变大。这已由加速器中高速运动的粒子所证实,并用在了加速器的设计中。

    另一个是质量和能量能够互相转换,物体的能量等于其质量乘以光速的平方,即著名的质能转换公式E=mc2。它也已为实验所验证,正是这个关系式为人类打开原子能利用的大门提供了依据。

    相对论发表后,许多物理学家,包括一些著名的物理学家对爱因斯坦的崭新时空观无法接受。洛仑兹这位曾在狭义相对论酝酿阶段起过重要作用的科学家,直到晚年还表示对没有以太无法理解。而迈克尔逊则说,没想到他的实验会引出相对论这个怪物。

    但是,也有一批物理学家意识到了相对论的重大革命性意义。量子论的创始人之一普朗克赞誉爱因斯坦是20世纪的哥白尼,他指出,这篇论文发表后将要发生的战斗,只有为哥白尼学说进行过的战斗才能和之相比拟。

    曾在联邦工业大学任过爱因斯坦数学老师、骂过爱因斯坦懒狗的闵可夫斯基深深为这一学说所打动,他不仅热情宣传相对论,而且对此进行了深入研究,引进了第四坐标即时间,赋予了相对论更完美的数学形式。

    创立广义相对论

    爱因斯坦建立狭义相对论,废除了以太这一特殊优越的参照系,可是却保留了一类特殊优越的参照系,这就是惯性系,只有在惯性系中,所有的物理定律才能成立。这太不符合爱因斯坦的哲学思想了。他坚信,相对性原理不仅对惯性系成立,对作加速运动的非惯性系也应当成立。他朝着这一目标开始了新的攀登。

    那么,怎样才能把相对性原理从惯性系推广到非惯性系呢?爱因斯坦又是从大家习以为常的事实中受到了启示,那就是惯性质量和引力质量相等。

    惯性定律告诉我们,任何物体在不受外力的情况下,都将始终保持静止或匀速直线运动。例如汽车加速时,坐在车中的人后背会紧贴在椅子靠背上,汽车一拐弯,人的身体又会向相反方向倾斜,量度物体惯性大小的量就是惯性质量。

    人在地球上,还有一种与人体质量相等的力,把我们拉向地球中心,与此相关的就是引力质量。

    几百年来,人们理所当然地认为惯性质量等于引力质量,并且不加区别地把它们统统称为质量。可是爱因斯坦偏偏要刨根问底,为什么惯性质量和引力质量恰恰相等呢?这是否意味着惯性与引力之间有着某种内在联系呢?

    这次爱因斯坦又设计了一个实验,人们管它叫爱因斯坦升降机实验。他假设有一个人,站在密闭的电梯中,当电梯静止或作匀速运动时,这就是一个惯性系,由于人受到地球引力的作用,这个人双脚和地板的压力正好等于他的体重。假设这个电梯脱离了地球的引力场,比如把它搬到太空中,让这个电梯以与重力加速度数值相等的加速度向上运动,此时电梯是一个加速系,人的双脚与地板之间的压力仍等于它的体重。在电梯中的人,无法判断他到底是在地球上作匀速运动还是在太空中作加速运动,也就是说,这两种状态是等价的。而当电梯的绳索断了时,电梯将在重力场中自由下落,此时电梯中的人将感不到引力的存在,处于失重状态,也就是说,可以通过选择某种坐标系,在一定范围内使引力完全消除了。

    这是爱因斯坦一生中最高兴的时刻,他终于找到了解决问题的关键,那就是等价原理。在一个小的时空范围内,一个加速系可以等价于引力场中的惯性系,这样就有可能把相对性原理从惯性系推广到非惯性系了。

    不过,从等价原理到建立广义相对论,还有漫长的路要走。爱因斯坦发现他的数学工具不够用了,在他的老同学、数学家格罗斯曼的帮助下,他找到了合适的数学工具——黎曼几何。

    1915年,爱因斯坦提出了广义相对论引力方程的完整形式,1916年3月完成了总结性论文《广义相对论基础》。历经10年的艰苦探索,相对论大厦的第二层楼房——广义相对论建成了。

    爱因斯坦把建立广义相对论看作他毕生最重要的成就。他曾说过,建立狭义相对论的历史条件成熟了,即使不是他,别人也会建立狭义相对论。而建立广义相对论的情况却不是这样。

    的确,广义相对论的建立与爱因斯坦本人是一位天才科学家有很大关系。如果没有他的革命批判精神、敏锐的物理直觉和高超的数学技巧,是不可能建立广义相对论的。因此,有的科学家评论,没有爱因斯坦,我们也许还要在黑暗中摸索。

    广义相对论给人们带来了对物质运动、时空、引力的全新概念。

    在牛顿力学中,物体之间存在着万有引力,而且这种力是瞬时、超距作用的,两个星体无论相隔多远,它们相互之间的引力传递不需要任何时间。而狭义相对论指出,任何物体的运动速度都不可能超过光速,那么如何解释引力呢?

    爱因斯坦的广义相对论给了引力之谜一个全新的解答。在这里牛顿假设的万有引力不再存在了,广义相对论认为物质和它的运动决定了时空的几何形式。物质分布得越密,时空弯曲得就越厉害,物质周围的引力场就越强。地球和其他行星之所以绕着太阳旋转,是由于太阳的巨大质量使太阳周围的空间发生了弯曲。

    与传统的时间和空间观念完全不同,空间和时间是运动着的物质的存在形式。有一位记者曾问爱因斯坦什么是相对论,爱因斯坦半开玩笑地说:“如果把所有的东西都从世界中运走,人们过去认为残留下来的就是时间和空间,那么,现在人们知道了,单独的空间和时间根本不存在。”这表明了物质、运动、空间和时间的不可分割的关系。

    三大验证

    爱因斯坦在世时,曾有人说,世界上懂相对论的人不到几个人。的确,人们从日常经验出发,很难理解相对论。但是,这一学说很快便为实践所证实。

    1915年,爱因斯坦应用广义相对论,成功地解决了历史上的一个悬案——水星近日点近动。

    早在1845年,法国天文学家勒维烈发现,水星的近日点在不断前移。根据牛顿万有引力定律,在排除了金星和其他种种因素之后,每100年仍有43秒差异无法解释。于是勒维烈预言,还存在一颗尚未发现的星,正是这颗星的万有引力造成了这43秒差异。他给这颗星起名为火神星。勒维烈曾利用万有引力定律成功地发现过海王星。

    可是,天文学家们花了几十年时间都没有找到这颗神秘的火神星。爱因斯坦用广义相对论最终揭开了火神星之谜。原来,由于太阳的巨大质量,使周围时空发生了弯曲,水星是离太阳最近的一个星,受这种影响最大,根据广义相对论计算,恰好每个世纪应该有43秒的近动,根本不存在什么火神星。其他行星离太阳较远,那里的时空性质相对改变较小,因此仍可以用万有引力定律较好描述。

    火神星的错误预言暴露了牛顿万有引力的缺陷,证明了广义相对论是正确的。

    广义相对论的第二个验证是光线在引力场中的偏移。1916年,英国天文学家爱丁顿得到了一本《广义相对论基础》,他一眼就看出了这篇论文的伟大意义。在其中,爱因斯坦预言光线在经过太阳边缘时会发生1.7秒的偏转。为了验证这一理论,爱丁顿苦苦等了4年,终于等到了1919年5月29日的日全食机会,这就是本文开场那一幕。

    广义相对论的第三个验证是引力频移。爱因斯坦预言,在引力场中,光的谱线将向红端移动。因为引力场越强,时空弯曲越厉害,时间就会变慢,光的频率也就会变慢,而红光是可见光中频率最低的,所以,光的谱线要向红端移动。1925年,美国天文学家亚当斯对天狼伴星光谱线的观测证实了引力频移。

    60年代以来,脉冲星的发现、黑洞的探索、河外星系的红移、大爆炸宇宙理论的提出,都表明了广义相对论是指导人们认识世界的有力武器。

    但是,爱因斯坦当年预言的引力波,至今还没有找到,相对论是否真正是引力之谜的谜底还有待科学的验证。可以肯定的是,广义相对论把人们对引力的认识大大提高了一步。

    爱因斯坦的预言

    当科学界还在努力理解狭义相对论和广义相对论时,爱因斯坦已经对这两种理论感到不满意了。虽然狭义相对论把经典力学与电磁理论从基础上统一起来了,广义相对论又进一步把相对性原理从惯性系扩大到非惯性系,但是引力和电磁两大相互作用却没有统一起来,而爱因斯坦追求的目标是世界的统一性。

    爱因斯坦又向新的更高目标攀登了。在完成广义相对论之后,他立即着手建立统一场论,试图把引力场与电磁场统一起来。他把建立统一场论看作是发展相对论的第三阶段。

    爱因斯坦从1923年开始到1955年去世,把后半生的主要精力都投入到建立统一场论的工作中,但是最终没有成功。

    不是统一场论的大方向错了,也不是爱因斯坦的个人智慧不够,而是客观历史条件还不具备,还缺乏经验和事实作为向导。

    狭义相对论的建立依据了两个基本事实,即相对性原理和光速不变原理,广义相对论有惯性质量和引力质量相等的基本事实为依据。统一场论却没有事实作根据,爱因斯坦只能作一些数学上的简单努力,因而失败了。

    当爱因斯坦孤独一人、埋头于统一场论研究的时候,从他身边奔驰而过的是量子物理学、原子物理学、固体物理学的时代洪流。许多科学家对爱因斯坦脱离了物理学的发展主流深感惋惜,但爱因斯坦却始终坚持对统一场论的研究是有意义的。他在晚年时对他的老朋友索洛文说:“我完成不了这项工作了,它将被遗忘,但是将来会被重新发现。”

    历史正像爱因斯坦所预言的那样。

    人们后来发现,宇宙中不只有电磁相互作用和引力场相互作用,还有强相互作用和弱相互作用。1961年到1968年,物理学家格拉肖、温伯格和萨拉姆提出了弱相互作用和电磁相互作用的统一模型,并得到了实验的验证,他们因此获得了1979年诺贝尔物理奖。

    四种相互作用的大统一研究,今天重新成为理论物理研究的前沿课题之一,人们正在朝着大统一的目标不懈地努力。

    发现原子核

    原子是由电子和原子核组成的,原子核又是由质子和中子组成的,利用原子核能还可以发电。

    这在今天已是中学生们都知道的常识了。可是过去,在很长很长的时间中,人们并不知道这一点,人们一直以为,原子是组成物质的最小的不可分的微粒。

    原子的概念最早是由2500多年以前古希腊哲学家留基伯和他的学生德谟克利特提出来的。他们认为宇宙万物都是由看不见的,不可再分的微粒组成的,这种微粒就叫原子。在古希腊文中,原子一词的原意就是不可分的。当然,那时谁也没有看到而且也无法证明原子是存在的,原子只不过是先哲们头脑思辨的产物。

    是英国化学家道尔顿第一个把原子论建立在了科学的基础上的。1808年,道尔顿提出,物质是由不可分割的最小微粒——原子组成,同一种元素是由同一种原子组成,而化合物则是由不同原子按不同比例组成的。无数的化学反应都证明了他的原子学说:不管化学反应怎样千变万化,原子始终是不变的,不同原子组合在一起,组成了千千万万不同的化合物。

    从此,人们对原子学说深信不疑,原子是组成物质的最小微粒在几乎整整一个世纪的时间中,都被科学家们当做是无可怀疑的真理。

    那么,人们是怎样发现原子是可分的,是由更小的粒子组成的呢?又是怎样把隐藏在原子核内的巨大能量释放出来的呢?

    打开通往基本粒子物理学的大门

    19世纪,随着电磁学的兴起,人们对电发生了浓厚的兴趣。电的本质是什么?要是能把电流从导线中取出来看一看就好了。

    人们发现,当电路断开,中间有一个小空隙时,电流依然可以通过,并打出电火花,发出劈啪声。不过亮光和声音本身并不是电,那是电流与空气作用的结果。要想真正探测到电,应该让电流通过一个真正空无一物,连空气也没有的间隙。1836年,法拉第曾做过真空放电管的实验,可惜他的放电管真空度不高。

    1855年,德国波恩大学的仪器工人盖斯勒利用托里拆利原理制成了一种水银真空泵,用它可以把玻璃管抽到接近真空的程度,这样,世界上第一个真空度比较高的低压放电管诞生了。

    当在它的两端加上足够电压时,电流就可以跳过真空了。这种管子叫做盖斯勒管。

    德国物理学家普吕克尔在用盖斯勒管做实验时,发现了一个奇怪的现象,当让电流通过低压气体放电管时,对着阴极的那一端管壁出现了绿色荧光。物理学家德斯坦认为,产生荧光的原因是某种射线从阴极发出,打在了对面的管子上,他给这种射线起名为阴极射线。

    神秘的阴极射线顿时成了科学家们研究的热点。有的物理学家发现,把物体放在阴极射线经过的途径中,管壁上会出现这个物体的阴影,这表明阴极射线像光一样,是直线传播的。因此,他们提出阴极射线是一种类似光的电磁波。

    还有的物理学家发现,当在放电管旁边放上一块磁铁时,阴极射线会随着磁体偏转。更有趣的是,让阴极射线打在一个小风车的叶轮上,小风车就会旋转起来,因此,他们认为阴极射线是一种带电粒子。

    科学家们为此争论不休。1897年英国物理学家约瑟夫·汤姆孙以发现电子结束了这场旷日持久的争论。

    汤姆孙28岁就成为英国皇家学会的会员,并担任了世界著名的卡文迪什实验室的主任。他原来主要是研究电磁理论,神秘的阴极射线把这位杰出的科学家也吸引到了研究低压放电现象的行列中来了。

    为解开阴极射线之谜,汤姆孙设计了许多巧妙的实验,他测出了阴极射线的传播速度远远小于光速,显然,阴极射线不是电磁波。汤姆孙用磁场把阴极射线引到了一种可以测电荷的接收器中,证明阴极射线是一种带负电荷的粒子流。更重要的是,他测出了这种带负电荷的粒子的荷质比(电荷与质量之比),氢离子的质量和所带电荷是已知的,通过与氢离子的荷质比相比,汤姆孙确定这种粒子的质量还不到氢离子质量的千分之一(后来精确测定为1/1837)。

    也就是说,它是一种比最小的原子——氢原子还要小得多的粒子。

    汤姆孙把各种不同气体充入管内,以不同的金属材料做阴极,所测出的阴极射线粒子的荷质比都一样,这就表明这种粒子是所有物质的共有组成部分。

    1897年4月30日,汤姆孙在英国皇家研究院报告了他的研究成果,他断定在物质内部有比原子小得多的带电粒子存在,并且认为它就是法拉第当年曾暗示过的电的单元。后来人们把阴极射线粒子改称为电子(电子一词是1891年爱尔兰物理学家斯托尼提出用来表示电荷最小单位的)。

    电子被发现了,它不仅向人们揭示了电的物质本质,而且宣告,原子不再是组成物质的最小粒子。

    其实,在汤姆孙之前,英国的舒斯特和德国的考夫曼也都测出过阴极射线的荷质比,甚至比汤姆孙测得还要准,但是他们不敢相信世界上会存在比原子小得多的粒子,因而错过了发现电子的良机。汤姆孙冲破了传统观念的束缚,勇敢地迈出了这一步,终于成为“一位最先打开通往基本粒子物理学大门的伟人”。

    1906年,汤姆孙因在气体导电方面的理论和实验研究,获得了诺贝尔物理奖。

    拉开20世纪物理学革命的序幕

    在汤姆孙发现电子之前,人们对阴极射线的研究还沿着另一个方向前进,由此也引发出一系列重大的发现。

    1895年10月,德国物理学家伦琴也在对阴极射线进行研究。他的主要兴趣不是阴极射线本身,而是射线打在管壁上所放出的绿色荧光。

    为了更好观察这种荧光,他用硬纸板和锡箔把放电管包起来,并把整个房间弄黑,当他接通电源刚要进行实验时,突然发现放在一米外的小工作台上那个涂有铂氰化钡的荧光屏发出了微弱的荧光。

    这一现象使他非常惊奇,一般荧光物质要受到太阳光照射后才会发光,现在屋子中是黑的,会不会是阴极射线的作用呢?他很快否定了这个想法,因为阴极射线顶多只能在空气中行进几个厘米远,况且现在放电管是被包在硬纸板中,阴极射线是透不过去的。

    伦琴顾不上吃晚饭,立即进行了更细致的观察和实验。他把荧光屏一步步移远,即使移到了2米远的地方,当接通放电管时,荧光屏也会发光。伦琴断定,这种看不见的射线是一种完全不同于阴极射线的新射线。

    此后整整7个星期,伦琴把自己关在实验室中,夜以继日地对这种神秘的射线进行研究。为了不中断实验,甚至吃饭、睡觉都不离开实验室。他初步搞清了这种射线是从阴极射线撞击玻璃壁产生辉光的地方发出来的,它直线传播,穿透能力特别强,不随磁铁偏转。由于这是一种人们尚不知道的新射线,伦琴用X射线来命名它。后人为了纪念伦琴,也称这种射线为伦琴射线。

    伦琴还详细地研究了X射线的穿透能力。他发现X射线能容易地穿透纸、木片、铝片等轻质物质,不容易穿透像铅那样的致密物质。射线被吸收的数量与吸收体的厚度和密度大致成正比。由于骨骼的密度比肌肉大,因此用这种射线照射人体时,便留下骨骼的阴影。伦琴用X光拍摄了他夫人的手指骨骼照片,这是历史上的第一张X光片。他还拍摄了放在盒子中的砝码、缠在木柄上的金属线等。

    就在这年的圣诞节刚过,伦琴公布了他的新发现,1896年1月,他又向他的朋友们寄出了论文的副本及照片。

    整个世界为之轰动了,特别是伦琴拍摄的穿透人的衣服、肌肉的X光片,引起了人们疯狂的好奇心。许多实验室都在重复伦琴的实验,有关X射线的论文大量发表。就在纽约日报报道X射线消息后的第4天,有人便用X射线检查出了受伤者足部的一颗子弹。这一新发现很快便被当作新技术应用到医学诊断上。

    伦琴曾说过:“我是偶然发现射线穿过黑纸的。”其实,在伦琴之前,也有好几位科学家偶然发现过这种现象。英国物理学家克鲁克斯在研究低压放电现象时,就发现放在装置附近的照相底片跑光了。他没有想到这是射线作用,而以为是底片的质量有问题,到工厂退货了之,错过了发现X光的机会。伦琴抓住偶然发现的现象,穷追不舍,透过偶然性的层层迷雾,寻找事物的必然性,因而获得了伟大的发现。

    伦琴因为发现X射线,1901年,成为世界上第一个获得诺贝尔物理学奖的人。

    在X射线被发现后,一系列具有划时代意义的重大发现接踵而至,X射线就像神话中的领路鸟一样,把人们引向了通往微观世界的道路,20世纪物理学革命的序幕被拉开了。

    神秘的放射现象

    伦琴的发现传到法国后,深深打动了一个人,这个人就是贝克勒尔。他想,既然X射线发生在荧光现象特别强烈的地方,那么是不是有强烈的荧光的物质,都能发出X射线来呢?他决定试一试。

    贝克勒尔出生在一个科学世家。他的祖父、父亲都是法国科学院的院士,并以研究荧光物质而闻名,因此,在他的实验室中,收集了许多荧光物质。

    贝克勒尔选中了他和他父亲都曾用过的一种铀盐——硫酸铀酰钾,把这种盐放在一个用黑纸包得严严实实的底片上,然后放在太阳底下晒,看底片会不会感光。因为太阳光和荧光都不能穿过黑纸,只有X射线才能穿透黑纸使底片感光。

    果然,如他所料,底片显影后上边有铀盐感光造成的灰白色的斑纹,贝克勒尔兴冲冲地向科学院报告了他的发现,可惜,这是一个错误的报告。

    贝克勒尔是一个受过严格训练的科学家,他准备继续实验,取得更多的事实,以便再过几天在科学院例会上做正式报告。可是偏偏天公不做美,一连几天都是阴天。他只好扫兴地把铀盐和包着黑纸的照相底片都收到抽屉中,焦急地等待着太阳出来。

    天一直阴着,开会的日子就要到了,贝克勒尔等不及了,他想上次照射的荧光总不会完全消失吧,也许会有轻度的曝光,于是他把底片冲洗出来。结果令他大吃一惊,底片比任何一次实验的曝光都要强烈!

    贝克勒尔多次重复这个实验,不管铀盐在黑暗中放多久,它们都能使底片感光。他又换用其他荧光物质,结果含钙、含锌的荧光物质都不能使底片感光。

    谜底终于揭穿了,使底片感光的原因是铀原子自身作用造成的,铀和铀盐能放出一种不同于X射线的新射线,这就是天然放射性。

    贝克勒尔的发现虽然不像X射线的发现那样引起轰动,但也有一些杰出的科学家对此很感兴趣,并继续进行研究,其中有一位就是来自波兰的年轻女科学家玛丽·居里。

    玛丽·居里出生在波兰一个中学教师的家庭。她勤奋、聪慧,中学毕业获得金质奖章,掌握了5门外语。由于家境贫寒,玛丽16岁时不得不去当家庭教师。后来她进入了法国有名的索尔本大学(即巴黎大学)学习。她住在冬天水能冻得结冰的亭子间,经常食不果腹。就在这样艰苦的条件下,她以优异的成绩取得了大学文凭。艰苦的环境培养了玛丽吃苦耐劳、坚韧不拔的品格。

    大学毕业后,玛丽和因发现低压电现象而在物理学界小有名气的皮埃尔·居里结为夫妇。1897年,她刚刚生下女儿伊伦,就马上选择了当时还很少有人研究的放射性作为自己的博士论文题目。

    居里夫人在研究放射性的时候,发现了一个非常奇怪的现象:沥青铀矿的放射性反而比纯铀还要强。她猜想很可能在沥青铀矿中还存在着比铀的放射性还要强得多的未知元素。

    这个想法一提出,立即遭到了一些人的讥笑,认为这是异想天开。性格坚毅的居里夫人没有动摇。她的丈夫皮埃尔·居里也意识到这项工作的重大意义,放下了手头的工作,投入了对新元素的寻找。

    他们的条件如此简陋,一间破棚子是他们的实验室,没有排放有害气体的通风装置和必要设备。为了将不同元素分开,他们将沥青铀矿装入大桶,加入化学试剂和酸一起煮沸。居里夫人用一根几乎和她一样高的沉重铁棒不停地搅拌着这些沸腾的粘稠液体,反应中放出的烟雾刺激着她的眼睛、喉咙,这种“男子汉的工作”累得居里夫人筋疲力尽,人消瘦了,手烧伤了。

    1898年7月,他们终于从矿石中分离出一种黑色粉末,它的放射性比铀强400倍,化学性质和碲很相似,居里夫人为了纪念她的祖国波兰,把这种新元素起名为钋(在拉丁文中,钋的字头和波兰的字头是一个)。

    但是钋的放射性还不足以说明沥青铀矿何以有这样强烈的放射性。于是,他们继续寻找,终于在同年12月又分离出了一种新的放射性更强的元素,他们给这种新元素起名为镭,在拉丁文中,镭的原意就是放射。

    居里夫妇最初得到的还不是纯的镭,因此许多化学家对是否有镭元素表示怀疑。为了得到纯的镭,并进一步弄清镭的性质,居里夫妇付出了更加艰巨的劳动。4年中,他们进行了几十万次提炼,1902年,终于从12吨沥青铀矿中得到了大约0.1克纯的氯化镭,测出了镭的原子量是225,放射性比铀强二百多万倍。

    1903年,居里夫人发表了她的博士论文,获得了巴黎大学物理学博士学位,这篇论文堪称历史上最伟大的一篇博士论文。她和她的丈夫皮埃尔·居里以及贝克勒尔因发现放射性,一起共享了1903年诺贝尔物理奖。1911年,居里夫人又因发现钋和镭获诺贝尔化学奖,成为历史上惟一两次获诺贝尔奖的女科学家,也是惟一同时获得物理和化学两种诺贝尔奖的科学家。

    追踪放射性之谜

    铀和镭等放射性元素放出的射线是什么?它们为什么会放出射线?许多科学家纷纷投入这一研究。其中有一位后来居上的佼佼者,他就是卢瑟福。

    卢瑟福出生在新西兰穷乡僻壤的一个小农家庭。他从小就表现出非凡的创造才能,把一只报废的钟修好了,还自制过一架照相机。凭着出色的才华,他连续获得三次奖学金,从高中升入大学,最后进入久负盛名的英国剑桥大学卡文迪什实验室,成为约瑟夫·汤姆孙的研究生。

    放射性铀的发现,立刻引起了卢瑟福的注意。为了研究铀发出的射线的穿透本领,他用厚薄不同的铝箔进行试验,结果发现铀发出的射线不是简单的一种,而是两种。有一种穿透本领比较小,只能穿透比较薄的铝片,他把这种射线叫α射线,还有一种能穿透较厚的铝片,贯穿本领比α射线大100倍,他把这种射线称作β射线。

    法国科学家维拉尔德从放射性物质发出的射线中,又发现了第三种射线,它的贯穿本领更强大,这就是γ射线。

    当让放射性元素发出的射线通过强磁场时,这三种射线便分道扬镳成为三股,朝一个方向弯曲得最厉害的是β射线,与它方向相反,稍稍弯曲的是α射线,而径直穿过磁场的是γ射线。这表明α、β射线都是由带电粒子组成的,且所带电荷方向相反,γ射线是不带电的。

    贝克勒尔首先证明,β射线是由高速运动的电子流组成的。α射线则要复杂得多,卢瑟福花了整整6年时间,直到1908年,才搞清α粒子实质上是氦的原子核。γ射线是一种波长比X射线还要短的电磁波。

    卢瑟福是一位物理学家,为了更好研究放射性物质,他和年轻的化学家索迪结为搭档。来自两个不同学科的科学家取长补短,很快就获得了累累硕果。

    在研究放射性元素钍的时候,他们发现已经提纯了的氢氧化钍放置一段时间,放射性会增强,也就是说钍变成了放射性更强的元素,他们称之为钍X,钍X也不稳定,又会变成放射性不同的另一种元素……

    这是什么原因呢?卢瑟福和索迪抓住这一现象不放,进行了深入研究。1902年,他们提出了元素衰变的理论,指出放射性元素是不稳定的,它不断放出射线,由母元素变成子元素,又由子元素变成孙元素……直至最后变成稳定的、没有放射性的元素为止。他们还找到了铀、钍等放射性元素的衰变系列。

    元素衰变理论揭示了放射性现象的本质,打破了自古以来一直认为的原子是不可创生也不能毁灭的观念,有力地证明了一种元素的原子可以变成另一种元素的原子。

    1908年,卢瑟福因发现放射性衰变和在放射化学方面的成就,获得了诺贝尔化学奖。索迪也因发现放射性同位素的成就获1921年诺贝尔化学奖。

    然而,卢瑟福的更伟大的发现则是在获得诺贝尔奖以后取得的,那就是提出了原子的有核模型。

    原子结构的行星模型

    电子的发现,放射性现象的发现都启示人们,原子内部一定有十分复杂的结构。

    那么,原子内部的结构是什么样的呢?物理学家们提出了许多有关原子结构的模型,其中最有名的就是汤姆孙的果子面包模型。

    汤姆孙认为,原子是由一个带正电荷的实体组成的,带负电荷的电子有规则地镶嵌在上边,就像葡萄干镶在面包上一样。电子一方面受到正电荷的吸引,一方面受到它们之间相互排斥的作用,而维持着平衡。这个模型能较好地解释许多化学现象。

    开始卢瑟福也赞同这种无核模型。为了检验原子的结构,卢瑟福与他的两名助手盖革、马斯顿做了一个历史上非常有名的实验,那就是α粒子散射实验。

    他们把一个放射源放在开有小孔的铅盒中,这样从这个小孔中就会射出一束很细的α粒子流,然后,让这束粒子流打在一块很薄的金箔上,金箔的后边放着一块硫化锌荧光屏,穿过金箔的α粒子打在上边会出现一个闪耀,因此用它可以记录α粒子的轨迹。

    按照汤姆孙的模型,α粒子穿过金箔时应当发生小角度的散射,可是实验结果完全不是这样,大多数α粒子都畅通无阻地通过了金箔,径直打在荧光屏上;只有少数粒子发生了散射,而且都是大角度散射;个别的α粒子甚至被反弹了回来。

    卢瑟福惊奇万分,他形容当时感到“就好像对着一张纸放了一发炮弹,而炮弹却被反弹回来打在自己身上那样难以置信”。卢瑟福为此苦苦思索了几个星期,从实验结果只能得出这样的结论,那就是原子内部有很大的空隙,因而绝大部分α粒子都能径直通过;少数α粒子发生大角度偏转,甚至被反弹回来,一定是碰到了质量远大于α粒子的、带正电荷的极小粒子的结果。因为α粒子是带正电的,同种电荷的粒子相互排斥。他通过精密实验和理论计算,得出原子的半径在100皮米左右,而原子核的半径为10-2~10-3皮米,也就是说原子核的半径只有原子半径的十万分之一到万分之一。

    在大量实验的基础上,1911年卢瑟福提出了原子行星模型,那就是原子中有一个极小的核,它几乎集中了原子的全部质量和所有正电荷,原子核带有多少正电荷,核外就有多少个电子,它们就像太阳系中的行星绕太阳旋转一样绕着原子核运动。

    卢瑟福的行星模型很好地解释了α粒子散射实验以及一系列化学、物理现象,因此很快为人们所接受。不过,卢瑟福的模型也不是尽善尽美的,后来,他的学生、著名的丹麦物理学家玻尔,应用量子力学,使这一模型变得更加完善了。

    原子核的结构

    原子是由电子和原子核组成的,那么原子核还可不可以再分呢?它又是由什么组成的呢?

    既然一个电子带有一份电荷,人们自然想到,原子核很可能也是由带一份正电荷的粒子构成的,氢的原子核是最轻的原子核,它只带有一份正电荷,是否原子核就是由它们组成的呢?

    1919年,卢瑟福用α粒子作炮弹,去轰击氮的原子核,结果发现,氮原子俘获了α粒子变成了氧原子,并且产生了一种新的射程很长、质量比α粒子更小,带一个正电荷的粒子,研究证明,这种粒子就是氢的原子核,人们把它称作质子。

    这是在人类历史上第一次用人工方法实现了核反应,把一种元素变成了另一种元素,实现了炼金术士们“点石成金”的梦想,同时,也证实了原子核中存在着质子。

    在卢瑟福之后,人们用α粒子轰击硼、氟、钠等轻原子,也都发生类似的核反应,放出一个质子。而周期表上所有元素的原子核的质量大体上都为质子的整倍数,因此,有人猜想原子核是由带正电的质子组成的。

    但是这种猜想有着明显的矛盾,除了氢元素之外,所有元素原子核中的电荷数目并不等于它们的质量,例如氦的原子核质量是氢的4倍,可是只带有2个正电荷。于是有人提出,原子核是由质子和电子组成的,电子中和了一部分质子的电荷,使剩下的正电荷正好与核外电子数相等。但是这一假说也碰到了困难,它不能解释原子核自旋等现象。

    科学家们在思索着,寻找着。

    1920年,卢瑟福在圣诞节给儿童讲科学知识时提出了一个大胆的假说,原子中有带负电的电子,带正电的质子,为什么不可以有不带电的中性粒子呢?他还预言了这种中性粒子的性质——它能很容易地穿过物质。

    大多数人对卢瑟福的预言抱着怀疑态度,有一个人,就是卢瑟福的学生查德威克却对此坚信不疑。他立即着手进行种种试验来捕捉这种中性粒子。但是10年过去了,这种中性粒子还是毫无踪影。

    1930年,德国物理学家玻特和贝克尔在用α粒子轰击锂、铍等轻元素时,发现了一种贯穿力很强的辐射线,能穿过2厘米的铅板,他们认为这是γ射线。

    1931年,法国物理学家约里奥·居里夫妇,也即居里夫人的女儿与女婿,对这一实验做了进一步研究,发现当这种射线射入含大量氢原子的物质石蜡时,会放出质子。实际上他们已经走到了发现中子的大门口,但由于囿于前人的研究成果,认为只有γ射线才是中性的,一个重大发现令人惋惜地失之交臂。

    查德威克看到了约里奥·居里夫妇的研究报告,立即意识到这就是他寻找已久的中性粒子,他分析γ射线要想打出质子必需有高到难以想象的能量才行,只有质量和质子相近的中性粒子才能把质子轰击出来。他立即投入了紧张实验,终于证明这种不带电的中性粒子质量和质子十分相近,中子终于被发现了。

    查德威克因发现中子,1935年获得了诺贝尔物理奖。

    中子被发现后,德国物理学家海森堡和苏联物理学家伊凡宁科都提出,原子核是由中子和质子组成的。这种模型圆满地解释了原子质量与原子序数的关系、同位素现象及原子核的自旋现象,很快得到了人们的公认。

    骇人的原子能

    早在1901年,居里夫妇就发现,含有镭的放射性物质,温度比周围环境要高,这表明,镭在衰变的过程中放出了能量。居里还对这种能量进行了测定,一克镭一小时释放的能量为136卡。初看起来,这个能量不大,但是它能日复一日、年复一年地释放,镭的半衰期是1617年,如果把一克镭一万年放出的热量加在一起,将是一克木柴燃烧时放出热量的60万倍,可见这个能量之大!

    卢瑟福和索迪在研究放射性元素衰变时,也注意到了放射性发生时伴随着能量的产生,他们指出,这种能量来自原子的内部,不仅放射性元素,普通元素的原子中也蕴藏着巨大的能量,只不过放射性元素内部的能量缓慢地泄漏出来。

    小小的原子中怎么可能会蕴藏着这样巨大的能量呢?它们是从哪里来的?这个问题不久就在爱因斯坦提出的质能转换公式中找到了答案。

    1905年,爱因斯坦在研究相对论时提出了著名的质能转换公式:E=mc2,其中E表示能量,m表示质量,c代表光速,为3×1010厘米/秒。

    这个公式告诉人们,质量和能量是可以相互转换的,质量是能量的密集形式,一点点质量就可以转换为巨大的能量,因为光速的平方是一个很大很大的数值。这样我们就不难理解原子中为什么会蕴藏有那样大的能量了。

    事实上,在我们今天利用核能的核裂变和核聚变反应中,都伴随着质量的亏损,而在化学反应中,质量亏损小到难以测定出来,也就是为什么核反应产生的能量比化学反应大得多的原因。

    爱因斯坦的质能公式为核能的开发利用提供了理论依据,然而怎样让核能为人们所利用却不是一件轻而易举的事。

    原子的质量集中在核上,因此要获得其中的能量就必须打开原子核。卢瑟福第一个用α粒子为炮弹去轰击原子核,实现了人工核反应。发现质子后,科学家们又用质子作为炮弹去轰击原子核。1930年,美国科学家劳伦斯发明了“原子大炮”——回旋加速器,可以把质子等炮弹加速得能量更大,从而对原子核的轰击更加强有力。1932年,查德威克发现了中子,它不带电荷,更容易打进原子核,因而为人们轰击原子核提供了一个更加有力的炮弹。

    然而,一直到1938年以前,核能库的大门始终紧闭着。人们虽然用人工办法引起了核反应,释放出一些能量,但是这些能量仅仅相当于实验中所消耗的能量的一个零头,得不偿失。

    许多科学家,包括卢瑟福、玻尔、爱因斯坦这样著名的大科学家,一时都对核能利用的前景表示不甚乐观。卢瑟福在一次演讲中说:“把原子衰变看成是一种动力来源,只不过是纸上谈兵而已。”爱因斯坦在回答记者提出的原子能何时能有效利用时说:“那不过是在黑夜里鸟类稀少的野外捕鸟。”玻尔在1936年还写道:“我们关于核反应的知识越多,离原子能可用于人类需要的时间越远。”

    山重水复疑无路,柳暗花明又一村。1938年,核裂变的发现,终于把核能库紧闭的大门给打开了。

    发现核裂变反应

    事情还要追溯到1934年,约里奥·居里夫妇用α粒子轰击铝,得到了自然界中所没有的放射性元素磷,他们因发现人工放射性现象获得1935年诺贝尔化学奖。

    意大利物理学家费米对约里奥·居里夫妇的实验非常感兴趣。他想中子不带电,更容易进入原子核,为何不用中子为炮弹去轰击原子核呢?费米领导的小组按照元素周期表上的顺序,从氢开始对63种元素的原子核逐一用中子去轰击,果然旗开得胜。他们一共获得了37种放射性同位素,同时还发现了慢中子效应——中子速度变慢以后反而更容易被原子核所获得。费米因此获得1938年的诺贝尔化学奖。

    费米开始轰击当时排在元素周期表上最后的一个元素铀,按照通常规律,原子核吸收一个中子后,放出β粒子,变成元素周期表中下一个位置的元素的原子核。费米推测,铀吸收中子后,很可能会变成周期表中尚未有的超铀元素。果然,在他们得到的产物中,有一种新的放射性元素,费米称它为铀X,认为它很可能是一种超铀元素。

    铀X的发现立即引起了轰动,许多物理学家、化学家纷纷投入这一角逐,试图解开铀X之谜。

    其中最著名的有约里奥·居里夫妇和他们的合作者、南斯拉夫化学家萨维奇;德国化学家哈恩和他的亲密合作伙伴、奥地利籍女物理学家迈特纳。

    1938年9月,伊伦·居里和萨维奇应用放射化学方法仔细分析了中子轰击铀以后生成的产物,发现其中有一种放射性元素性质很接近镧,而镧的原子序数只有57,与超铀元素相去甚远。可惜的是,他们没有抓住这个矛盾深追下去,而是匆匆忙忙发表了实验结果,又一次错过了一个重大发现。

    12月17日,哈恩的助手斯特拉斯曼在办公室翻阅新到的期刊,看到了伊伦·居里的实验报告,立即递给哈恩。开始哈恩因学术上成见对论文不屑一顾,斯特拉斯曼只好口述了论文最重要的地方,聪明的哈恩立即意识到,铀X之谜就要解开,他连一支雪茄烟都没有抽完,就和斯特拉斯曼一起向实验室跑去。

    哈恩和斯特拉斯曼一连几天做用中子轰击铀的实验,经过反复精密的实验,都表明核反应产物中没有靠近铀的元素,而是两种大小相当的元素,其中之一是钡。

    12月22日,他们把实验报告寄给了德国《自然科学》杂志。哈恩的心情十分矛盾,一方面感到这是一个很重要的事实,有必要很快宣布,一方面又感到实验得出的结论与以往核物理实验相矛盾,他甚至在把报告投入邮筒后,还想把它取出来。

    此时,哈恩想起了与他共事三十多年的迈特纳,她才华横溢,有敏锐的批判眼光。由于她有犹太血统,在德国占领奥地利后不得不逃到瑞典避难。哈恩把实验结果连同他的疑问全都写信告诉了迈特纳。

    迈特纳接到信后,立即意识到哈恩工作的重大意义。当时,她的侄子、在玻尔实验室工作的弗立希正好来看望她,两人对这个实验进行了热烈的讨论,他们从玻尔不久刚提出的原子核的液滴模型受到启发,得出结论,铀的原子核受到中子轰击后,分成了两半,并用爱因斯坦的质能公式估算出核裂变时放出的能量大得惊人。

    弗立希回到哥本哈根后,把哈恩的实验和迈特纳的解释告诉玻尔,玻尔听后,拍了一下自己的前额,遗憾地说:“我们怎么能这么久没有发现这一点呢!”

    当时,玻尔正动身去美国参加理论物理讨论会。当他把这个消息在会场公布后,整个会场沸腾了,会议原定的议题是讨论低温物理,现在一下都转向了核裂变。物理学家们纷纷打电话通知自己的实验室安排实验,结果都得到了证实。就这样,核裂变的实验和理论在几个小时内就得到了世界的公认。

    哈恩因发现核裂变获得1944年诺贝尔化学奖。

    点燃原子之火

    核裂变现象的发现所以令科学家们激动不已,不仅是因为在裂变反应中放出巨大的能量,而且因为在裂变中会放出二三个中子,引起链式反应。

    当费米得知核裂变的消息时,他一方面为自己对铀X的错误判断而深感遗憾,一方面敏锐地从中意识到更深远的意义,他立即着手思考裂变中产生的中子能否引起链式反应。

    经过详细计算,费米提出,当一个中子打碎铀核时,会放出2个中子,这2个中子又可以打碎另外两个铀核,放出2倍的能量和4个中子,这4个中子又可以击碎4个铀核,放出4倍的能量,并再放出8个中子……这样一连串的裂变反应就可以自发地持续下去。

    不仅费米、约里奥·居里夫妇,逃亡到美国的匈牙利物理学家西拉德也都在思考着这个问题。

    他们投入了紧张的实验,在不到2个月的时间里,分别证实了链式反应不但可能,而且速率极高,两次反应间隔的时间仅为五十万亿分之一秒,也就是说核裂变链式反应一旦实现,在极短的时间内就会有巨大的能量释放出来。如果能控制它的速率,核能就能作为一种稳定的能源为人们所用。而如果对反应速率不加控制,它就有可能发生猛裂的爆炸,成为杀人武器。

    核链式反应的发现为人们利用核能提供了可能,但要真正实现链式反应,还有许多困难需要克服。第二次世界大战的爆发把它提上了议事日程。

    1939年9月1日,德、日、意法西斯发动了第二次世界大战。一大批逃亡到美国的科学家意识到核裂变将有可能被用来制造威力巨大的原子弹,他们说服爱因斯坦,联名写信给美国总统罗斯福,敦促美国抢在纳粹德国之前,造出原子弹。1942年,以制造原子弹为目标的浩大而又绝密的“曼哈顿工程”开始了。

    首先必须论证实现链式反应的实际条件,美国决定先建一座可以控制裂变反应进行的装置,因妻子是犹太人避难到美国的费米受命领导研制这一原子反应堆。

    1942年12月2日,建造在芝加哥大学操场上的原子反应堆开始试运转。它是由一层石墨,一层铀相间堆成的蜂窝状装置,共有57层,高6.5米,长近10米,呈扁球形。上午9点45分,费米下令开动反应堆,当控制棒被抽出一点时,人们听到了计数器的咔嗒声。下午3时20分,费米果断下令:“把控制棒再往外抽出一英尺!”计数器的咔嗒声快得分辨不清,最后变成了稳定的响声,试验成功了。人类第一次有控制地释放了来自原子核内部的能量。

    芝加哥大学教授康普敦给在哈佛大学等候消息的康南特用事先约好的暗语通了一次著名的电话:“那位意大利航海家已经在新大陆登陆了。”

    1492年,意大利探险家哥伦布登上了美洲新大陆,1942年,又一位意大利探险家费米,登上了原子新大陆,点燃原子之火。

    遗憾的是,核能并没有首先作为能源用到发电上,而是被用于战争。1945年,美国把两颗原子弹投到了日本的广岛和长崎。

    原子能用于发电比原子弹要晚得多。1954年,前苏联建成了世界上第一座向工业电网供电的核电站。

    随着化石燃料的短缺和燃煤、燃油造成的污染,核电作为一种安全、清洁、经济的新能源日益受到人们的重视,在人类能源中所占的比例越来越大。现在,核电已占到了全世界总电力的1/5,预计到本世纪末,这个数字还得上升到23%左右。

    要解决人类面临的能源短缺难题,根本途径是实现受控核聚变。氘和氚聚变时放出的能量比裂变能还要大,而且氘和氚来自海水,可以说是取之不竭、用之不尽。全世界的科学家正在努力,向着实现受控热核聚变,建成热核电站的目标努力。

    湍流理论的发现

    钱学森、郭永怀、钱伟长、林家翘等人的名字,海内外中国同胞都非常熟悉,他们都是世界知名的科学家。其中钱学森、郭永怀主持了我国航天事业和核弹、导弹的研制,为中国科学技术的发展作出了巨大的贡献。而这几位科学家全都师出于一位科学家,他就是西奥多·冯·卡门(1881~1963)。冯·卡门,美国航空工程学家,开创了数学和基础科学在航空、太空和其他技术领域中的应用,从而获得美国总统授予的第一枚国家科学勋章)。

    1963年2月18日上午,瑞雪初晴,晶莹的雪片在阳光下闪出奇异的光芒,粉妆玉砌般的积雪把大地变幻成银色的世界。美国白宫玫瑰园里宾客云集,这是华盛顿难得的雪后晴天。美国第一枚“国家科学勋章”的颁发仪式即将在这里隆重举行。

    美国自建国以来,涌现出众多的科学大师,各级政府部门和民间团体曾颁发过无数科学奖章。然而,由美国总统代表国家亲自颁发的科学勋章,却还是头一次。获得这一崇高荣誉的就是现代航空大师西奥多·冯·卡门。

    军乐队奏起了欢迎曲,宾客们急切地将目光转向通往白宫的礼仪门,人们都想先睹获奖者的风采。门开了,卡门和美国总统并肩步入白宫,向玫瑰园走来。

    八旬高龄的冯·卡门,由于患有严重的关节炎,在走下高高的台阶时,显得力不从心、步履蹒跚。年轻的美国总统赶忙上前搀扶他,老人点头报以感激之情,轻轻地摆脱了总统伸出的手,淡然一笑说:

    “总统先生,下坡行路的人无需搀助,惟独举足高攀的人,才求一臂之力。”

    当总统把金灿灿的勋章挂在卡门老人的脖子上时,人群中响起了热烈的掌声,军乐队高奏贝多芬不朽的名曲《英雄颂》。

    白宫授勋仪式之后不久,老人的心脏衰竭,终于在82岁寿辰的前5天,离别了人间。这位一代传奇人物结束了他多彩的人生,但是,在那日益增多的飞行工具上,却铭刻着他征服天空的不朽业绩。

    卡门1881年5月11日生于匈牙利,父亲是教育学教授,他受到了良好的早期教育。儿童时代的卡门,很早就显露出数学天赋。卡门的数学天赋着实使父亲感到惊奇,但是卡门的父亲从全面教育出发,不得不采取措施,抑制他在数学方面的智力发展,让他多学些人文科学知识。

    9岁那年,卡门进入了被人们誉为“明星摇篮”的匈牙利明达中学。17岁的卡门,作为一名中学优等生,进入了当时匈牙利惟一的工科大学约瑟夫皇家工艺大学。25岁的卡门争取到了匈牙利科学院的奖学金后,便前往当时世界的科学圣地——哥廷根。

    20世纪初,哥廷根的人口不足3万,然而,这是一座智力之城、学院之城,哥廷根在近代科学文明中颇有名望。古老的建筑,迷人的花园,幽静的街巷,一派静悄悄地庄严气氛,世纪的墙垣环抱着郁郁葱葱的林阴,哥廷根大学哥特式建筑的尖形塔,更使这里具有中世纪修道院的风格。

    哥廷根大学是1734年创建的一所古老的普鲁士大学,当时是世界理论科学的中心。哥廷根也是近代流体力学的发祥地,被誉为“空气动力学之父”的路德维希·普朗特此时正在这里主持工作。

    普朗特十分注意研究从复杂的工程问题中抽出基本的物理过程,再用简化的数学方法加以分析,这与卡门的想法十分吻合。

    在普朗特的指导下,卡门利用哥廷根良好的实验条件,对一系列机械工程问题进行了研究。

    这为他日后的飞机结构设计,提供了重要的技术保障。

    1903年,卡门通过了博士学位答辩,而后赴巴黎学习考察。不久,普朗特从哥廷根寄邀请信,要卡门回去担任实验室的助手,参加哥廷根第一个风洞的筹建及“齐柏林号”飞艇的设计。卡门愉快地接受了这一邀请,从此他开始了作为航空科学家的生涯。

    哥廷根风洞是为“齐柏林号”飞艇设计服务的;卡门协助普朗特完成了德国第一批空气动力学实验。同时,他还担任力学课的教员。哥廷根的学习、研究和生活对于卡门说来是十分珍贵的。

    当时,一批科学明星荟萃于哥廷根。卡门置身于这些科学大师之中,眼界大开。尤其是希尔伯特与克莱因这两位各有所长的数学大师,对卡门产生了深远影响,使卡门横跨两个基本学科——纯粹数学和应用数学。

    卡门投入科学研究初期,正是物理学的革命时期。放射性的发现正在揭开原子奥秘的帷幕。

    1911年到1921年间,普朗特正在研究边界层分离现象。他设计了一个水槽,用以观察流体经过圆柱体后面的分离现象。水槽里的水流不断发生摆动,普朗特对此并不注意。卡门思想敏捷,善于洞察事物本质,当他插手这一实验之后,立即加以深入研究。

    实验显示,流水在圆柱后形成两排交叉的涡旋。卡门对此进行了数学分析,从理论上证明只有交叉排列的涡旋才是稳定的。他在三个星期内完成了两篇出色的论文,这两篇论文成为流体力学中一次重大发现的标志。

    流体经过一个障碍物,会在它后面留下两排交叉的涡旋,这一现象早已为人们所知,但是,卡门第一次从理论角度阐明了这一现象的实质。由于这两排交叉的涡旋好像是大街两旁的两排街灯,于是人们把这一现象叫做“卡门过街”。

    在人类的建筑史上,因忽视“卡门过街”的作用,曾发生过一起惊心动魄的事件。事情是这样的:在美国西雅图附近有一座横跨塔科马海峡的大桥,它是一位著名建筑师设计的“艺术杰作”。1940年11月7日,8级狂风大作,在强烈的“卡门过街”的作用下,大桥发生了急剧的扭曲、振动,结果在不到一个小时崩塌殆尽。人们最终意识到建筑设计必须考虑“卡门过街”的效应,因为一切建筑物都处于空气这一流体之中,风速过快时都会产生“卡门过街”

    现象。

    卡门离开哥廷根前往亚琛任教时,已经奠定了他的基本流体力学理论权威的基础。不久,他担任亚琛工学院空气动力研究所所长。他在亚琛工作期间,组织并主持了三次国际应用力学会议。卡门和他的老师普朗特合作研究,突破了如今仍被人们视为流体力学最大难题的“湍流”问题,虽然这个问题至今仍困扰着人类,但“湍流”问题的研究在这一时期获得了第一次重大进展。卡门和普朗特的湍流理论,现在仍是工程湍流计算中的重要依据,成为流体力学的经典理论。

    1929年卡门出任加州理工学院航空实验室主任时,美国的航空工业正处于蓬勃发展阶段。从1930年到1942年,经过12年的努力,卡门领导的加州理工学院航空实验室,已经成为国际流体力学研究中心。卡门在整个流体力学领域,指导了两代科学家和工程师,开拓了新领域,为航空技术奠定了扎实的科学基础。

    1945年,卡门起草了一份关于航空工业发展必须依靠科学技术的报告。报告分析了两次世界大战中的人力、武器、科学技术的作用,还具体探讨了超音速飞行和火箭的技术问题,这篇报告对美国当局产生了非常深刻的影响。

    在卡门的倡导、呼吁下,美国逐步成立了一些研究机构。1947年超音速无人驾驶飞机发展中心成立;1948年著名的智囊机构——兰德公司成立;1952年阿诺德航空工程公司成立;1957年成立了国家原子能委员会。到1957年,卡门的计划大多已付诸实施,火箭、导弹已经大量生产,超音速飞机横越大洋,人造卫星也已经围绕着地球运行。

    第二次世界大战战火熄灭之后,卡门全心地致力于发展国际航空事业。50年代,卡门主持了两次国际航空会议,创建了国际宇航科学协会,成立了国际宇航科学院,推动了国际宇航事业的发展。

    当时十分脆弱的中国航空事业也得益于卡门的指点。1929年,卡门路经中国,建议在清华大学开设航空课程。抗战爆发后,清华大学创办航空系,卡门派他的弟子、航空技术专家沃登道夫来华担任该系的科学顾问。

    卡门在加州理工学院时期,还培养了一批出色的中国科学家,他们之中有众人熟知的钱学森、郭永怀、钱伟长,以及美籍华人林家翘等。其中钱学森在30年代末期火箭技术还处于摸索阶段就与其他几位年轻科学家看到了这一技术的发展远景,成立了一个名叫“火箭俱乐部”

    的研究小组。这一小组后来发展为加州理工学院喷气推进实验室,成为全世界火箭喷气技术的一大中心。

    卡门在漫长的科学生涯中,对流体力学、空气动力学,尤其是以此为基础的航空技术贡献卓著。他不仅是宇航工业技术的研制者,更是国际航天事业的组织者,他同时涉足理论和应用科学两大领域。直到70岁时,卡门还集中精力研究一门他所生疏的学科——燃烧学,他把燃烧化学与流体力学结合起来,奠定了现代燃烧理论的基础。

    泡利不相容原理的发现

    1900年4月25日,伏尔夫岗·泡利(1900~1958)生于奥地利首都维也纳。

    他的父亲做过医生,是一个有名的学者,后来担任维也纳大学胶体化学教授。泡利出生后接受过天主教的洗礼,教父是物理学家和哲学评论家厄恩斯特·马赫,因此泡利自幼就受到了良好的科学环境的熏陶。他在念小学时,学习成绩始终名列前茅。上中学后,课堂教学已经满足不了他的需要,他广泛阅读课外书籍,尤其喜欢自然科学。

    中学快毕业时他得知,爱因斯坦发表了广义相对论,这在当时是一门崭新的学科,是物理学的前沿。他对此表现了极大兴趣,甚至在课堂上也在偷偷地阅读。他那时已掌握了高等数学,所以读过爱因斯坦的著作后,他感到眼中的翳障突然消失,一下子对广义相对论能够心领神会了。

    中学毕业后,泡利决定攻读理论物理学。他进了慕尼黑大学,跟随良师益友索末菲。索氏当时在德国以至世界上都可以算得上一位最有声望的理论物理学导师,许多杰出的科学家,包括海森堡、贝蒂在内都出自他的门下。

    在这里,泡利在索末菲教授的指导下,他的理论分析技术更臻成熟,他的非凡才华得以显露。在为《数学百科全书》撰写相对论综述之前,尽管泡利当时还不到20岁,可是已经发表过好几篇相对论的论文了,因此深得索末菲的赏识。

    1921年,泡利以论文《论氢分子的模型》取得博士学位,从慕尼黑大学毕业。他的论文被认为是对于玻尔-索末菲量子理论应用问题的卓有见地的文章。

    1922年,泡利离开慕尼黑大学,来到哥廷根大学——当时由玻恩和弗兰克领导的世界理论物理研究中心,担当玻恩的助手。在此期间,他结识了尼尔斯·玻尔。一学期后,他接受了玻尔的邀请,来到了哥本哈根理论物理研究所工作。这里自由的学术空气和讨论方式,加之名师的指导,使泡利学到了科学的思维方法,锻炼了纯熟的数学技巧,弥补了他不擅长实验、动手能力不足的弱点。此后不久,他又去了汉堡大学担任编外讲师。

    从1923年到1928年这5年中,泡利一边进行教学工作,一边开始从事量子物理学的研究。他专攻的首要课题就是反常塞曼效应。反常塞曼现象深深地迷住了他,在他的宿舍里,桌子上、床上到处都是演算的草稿,窗台上老是放着未吃完的面包,他从早到晚不上运动场,也不去音乐厅,总是写啊,算啊,可是却一直没有头绪,因此他总是整天愁眉苦脸的。

    当然,泡利没有把反常塞曼效应的问题完全解决。事实上,当时波动力学还没有发展起来,要想完全解决这个问题也是不可能的。但是,他把塞曼效应的研究用来正确地解释光谱线的精细结构,这是电子所具有的一种在经典力学中找不到的新性质。为了解释这种精细结构,泡利用一个新的只能取两个值的量子数来描述电子,这个新量子数就是电子自旋的投影,他后来因此发现了电子自旋。这个新量子数的存在和泡利所做的解释都得到了证实。

    新量子数的发现为泡利最重要和最著名的发现做了准备。1925年,这方面的研究终于使他发现了自然界的一条基本规律——泡利不相容原理。在泡利提出这个原理之前,朗德、索末菲和玻尔等人都相信碱金属原子中被价电子围绕的那部分组成,具有角动量,这角动量是磁反常的原因。至于这部分组成为什么具有角动量和磁矩,则谁也说不出道理。

    泡利不相容原理认为:一个原子中不能有两个或更多的电子处在完全相同的量子状态。应用这个原理可以很好地解释原子内部的电子分布状况,从而把由玻尔的原子理论不能圆满解释的元素周期表的分布规律说得一清二楚。这个重要发现使泡利在20年后,即1945年,获得了诺贝尔物理学奖。

    从1928年起,他担任了慕尼黑联邦工业大学的理论物理学教授,他在这里一直工作到去世。

    近30年的时间里,他一直坚持不懈地刻苦钻研,他以自己非凡的智慧,凭借科学的预想和不断创新的精神攀登着一个又一个的科学高峰。

    20世纪20年代物理学家们发现:在原子核放出电子的β衰变过程中,放射出来的电子所携带的能量,并不和原子核所损失的质量相对应。经测定,放出电子所带走的总能量要小一些,也就是说,在β衰变过程中有能量“亏损”的现象。

    那么,这一部分亏损的能量到哪里去了呢?大家都知道,能量是不能创造也不能消灭的,只能由一种形式转化为另一种形式。面对这种情况,人们犹豫、彷徨。1930年,玻尔甚至准备放弃能量守恒原理,因为他认为,能量守恒在微观粒子作用过程中不一定成立,这样就可以解释β衰变中的能量亏损现象了。

    玻尔是泡利的良师益友,两人之间有着深厚的友情。可是泡利并未因此而放弃自己的观点,他不相信在自然界中惟独β衰变过程违反守恒定律。为了“挽救”能量守恒原理,找到能量亏损的真实原因,他思索着,钻研着……终于,在1931年他大胆地提出了自己的科学假想——他假设存在一种新的粒子,它伴随β粒子从核中发射出来,但此种粒子质量很微小,不超过电子质量的万分之一,不带电,稳定,由此满足每次β衰变事件中能量守恒。并且为了使β衰变中自旋守恒,他还假设这种粒子的自旋为1/2。1932年,费米把这种粒子称为“中微子”,意思就是“微小的中性小家伙”。

    泡利的中微子假说提出以后,令人信服地说明了β衰变中失踪能量的去向,圆满地解决了这个矛盾。然而由于中微子没有电荷也没有质量,就像个“幽灵”般神秘莫测,许多物理学家忧虑地认为,这不过是泡利为了维护能量守恒定律,使能量在数值上达到平衡而想像出的不切实际的幻影。

    在巨大的压力面前,泡利没有屈服,仍以科学的态度严肃认真地进行着科学研究。经过漫长的25年后,1956年,美国洛斯·阿拉莫斯科学实验室终于第一次直接观测到中微子,证实了中微子的确是存在的。泡利比此前许多伟大的科学家幸运得多,他终于亲眼看到了自己的科学假说变成了现实,他欣慰地笑了。

    泡利在量子力学、量子场论和基本粒子理论方面的卓越贡献,特别是他的不相容原理和β衰变中的中微子假说等,在理论物理学的发展史册上谱写了辉煌的一页。他的名字与相对论、量子力学和量子场论紧紧地联系在一起,人们称赞他为“当之无愧的理论物理学家”、“理论物理学的心脏”。

    作为一个理论物理学家,泡利的最后一项重要工作是研究场论中的各种分立对称性,他证明了每个洛仑兹不变拉格朗日场论,在CTP(电荷共轭、时间反演、宇称)操作下是不变的,而C、T和P不必分别是对称的。不久之后泡利就发现,在弱相互作用中,例如在β衰变中,对称是不守恒的,即P单独是不守恒的,这一发现使他激动万分。

    正当他在科学的高峰上奋力攀登的时候,却不幸患了重病,1958年12月14日在瑞士苏黎世逝世,享年58岁。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架