征服太空之路-飞机引领人类进入飞行时代
首页 上一章 目录 下一章 书架
    尽管人类为了实现飞翔之梦、征服太空而努力了数千年,并发明了热气球、飞艇等主要依靠空气浮力升空的飞行器。但是这些飞行器无论是在安全性还是在操纵性等方面都存在许多缺陷。这不但限制了这些飞行器的发展前景,也使得人类必须另辟蹊径,在征服太空之路上继续探索。

    1903年12月17日,美国著名科学家莱特兄弟制造的飞机首次试飞成功,从而完成了人类历史上第一架有动力、可载人、并且持续稳定的飞行器。飞机的成功升空是20世纪中人类最伟大的创举之一,它是人类征服太空之路上的一座里程碑,标志着飞行时代的到来。从此之后,飞机工业开始飞速发展,各种飞机如雨后春笋,层出不穷,人类离征服太空之梦的实现也越来越近了。

    莱特兄弟开创了飞行时代

    真正的飞机应该是可以依靠自身的力量起飞,并且由飞行员随意地操纵,上升、转弯、向下俯冲的,就像一只大鸟,天空是它自由快活的世界。

    尽管很早人们就模仿鸟类制造出了各式各样千奇百怪的飞行器,如滑翔机、扑翼机等,但它们都不是真正的飞机,它们只能像风筝一样,靠风的力量起步,在天空飞行。如果天空中无一丝的风,它们就无法上天,更谈不上在天空翱翔了。

    翻开人类的航空史,就会发现世界上第一架真正的飞机是由美国的莱特兄弟发明和制造的,至今已100多年了。

    在20世纪初的1900年,美国俄亥俄州的代顿市,有一对开自行车商店的兄弟,他们当时30多岁,兄长叫威尔伯·莱特,弟弟名叫奥维尔·莱特。他们经营自行车的制造和销售已有多年,有了一些钱并积累了一些制造方面的经验。于是,他俩便开始将注意力转向制造飞行器,以满足和了却兄弟俩从少年时代起就萌发的在天空飞行的夙愿。

    飞机引领人类进入飞行时代当时,人们制造的飞行器只是一些类似风筝一样的滑翔机,和一些不能飞起来的扑翼机,没有任何真正有用的经验。图书馆里少有的几本书也是错误百出。但这时人们的确发现了一个真理:拱形的物体可以在流动的空气里获得升起来的力量。莱特兄弟一开始就注意到了这一点。

    他们首先制造了一架双翼风筝式的滑翔机,像放风筝一样被放到了空中。不过,这架滑翔机是无人驾驶的,依靠绳子来操纵,可以转弯和依靠风的力量爬升。莱特兄弟将这架飞机的机翼做得弯弯的,就像展开了的老鹰的翅膀。为了产生更大的升力,机翼做成了上下两层。当时,他们不知道,并不是多层机翼就一定会产生更大的升力,即使是升力大了,因为多层机翼制造需更多材料,而增加的重量也可能将这部分增加的升力抵消掉。

    为了进一步掌握操纵飞机的道理,他们造出了另一架靠人操纵的滑翔飞机。不过,这种飞机的样子很怪,它的升降舵不像现代飞机那样装在飞机的尾巴上,而是装在双层机翼的前面,也没有什么驾驶舱,驾驶员趴在机翼上,依靠移动身体的位置来操纵滑翔机飞行。起飞的方法也十分可笑:一人抓住一个机翼,迎着狂风向前猛跑,就像放风筝一样。时常在飞行中稍不小心,就从空中栽下来,不过好在升降舵装在飞机的前面,飞机坠地时,可以起到缓冲的作用,使莱特兄弟不受伤害。他们进行了上千次的滑翔飞行,也不知从空中摔下了多少次,从这些飞行和失败中积累了许多宝贵的经验。

    1903年夏天,莱特兄弟在对200多个机翼剖面进行反复的实验比较后,制造出了一架机翼长达10米、面积有29平方米的飞机,并第一次将一台可以产生8820瓦动力的内燃机装在飞机上,用来带动一个直径2.55米的木头做的螺旋桨,从而产生向前飞行的拉力。8820瓦就好比12匹马在拉着飞机向前跑。

    这第一架飞机在1903年的冬天作了第一次飞行。飞机没有装起飞着陆的轮子,莱特兄弟发明了一个奇特的起飞装置,使飞机弹射起飞。他们将飞机放在20米长的滑槽上,用绳子拴住飞机,绳子的另一头系在木制塔楼上的一个重物上,比如一块大石头或者一大麻袋的泥土。当重物从高高的塔楼上落下时,就牵引着飞机高速地从滑槽上飞起来,颇有点像我们今天看到的在航空母舰上飞机的弹射起飞。

    人类第一次真正飞机的飞行是具有特别意义的,即使是莱特兄弟这样两个亲密无间的人,都因为究竟该谁第一个操纵它而争执不下,兄弟俩只好以掷硬币的方式决定谁先飞。结果是兄长威尔伯赢了,但他却未能成为这架飞机的第一个飞行员,因为在起飞时,他操纵失误,飞机刚起飞便一头栽到了沙滩上。

    这架名叫“飞鸟”的飞机在轮到弟弟奥维尔试飞时,却表现得十分出色。1903年12月17日早晨,奥维尔·莱特成为第一个驾机实现连续操纵飞行的人。这次具有历史意义的飞行总共只有12秒的时间,飞行的距离也不过36米远,但这毕竟是当时人类的首个飞行纪录,是人类的第一次随心所欲的自由飞行。同一天,接着的第三次飞行,持续了59秒,飞行了255米远。人类从此进入飞行时代。

    此后,莱特兄弟又对飞机进行了无数次的改进。1905年,他们制造的飞机,不仅能任意地倾斜、转弯,还可以毫不费劲地在空中做划圆圈和“8”字飞行。1908年,莱特兄弟驾驶着他们新制造的装有一台功率为22050瓦的发动机、两副螺旋桨的飞机,在法国进行了一次公开表演,飞行速度为每小时60多千米,比当时的火车速度快2倍,引起了全世界的轰动。

    莱特兄弟的飞机进入欧洲以后,欧洲的飞行先驱将它进行了巨大的改进,将升降舵移到了飞机机翼的后面,也就是尾巴上,这就是今天飞机的雏形。最后一架改进型的莱特飞机出现在1915年,它装有一台51450瓦的发动机,能用于军事侦察飞行,这大概是第一架军用侦察飞机。

    知识点内燃机

    内燃机是将液体或气体燃料与空气混合后,直接输入机器内部燃烧产生热能再转化为机械能的一种热机。内燃机具有体积小、质量小、便于移动、热效率高、启动性能好的特点。内燃机的构想在17世纪中叶出现,并于19世纪末发展完善。

    内燃机,特别是汽油机和柴油机的出现,是第二次工业革命的重要成果,它们为交通运输业开辟了广阔的前景。1886年装置汽油机的汽车诞生,开始了汽车工业的新时代;1887年汽油机驱动的轮船开始在江河湖海中出没往返,开辟了水上运输的新纪元;1903年装上汽油机的飞机开始翱翔长空,揭开了人类航运的新篇章。

    冯如和中国航空事业的起步

    1909年9月21日,中国旅美华侨冯如,在美国奥克兰州派得蒙特山附近的平坦空地上,驾驶一架有动力的飞机试飞成功,取得了飞行高度4.57米、飞行距离804米的成绩。9月23日,美国《旧金山观察者报》曾以《东方的莱特在飞翔》为题,报道了“天才的中国人冯如自己制造飞机并装上自制的发动机进行试飞”的经过,并作出了“在航空领域中,中国人把白人抛在后面”的高度评价。冯如集研制飞机和驾驶飞机于一身,因而我国的航空史学界称他为中国第一个飞行家。

    冯如,字九如,1883年12月15日生于广东省恩平县。12岁时赴美国当童工,夜间学习英文,后在一家工厂当工人。白天他在工厂从事繁重的劳动,夜间努力攻读有关机械学方面的书籍。经过几年的潜心研究,他在机器制造方面已积累了不少知识和经验。1906年,冯如在旧金山与当地华侨和亲友集资创办飞机制造公司。1907年,在冯如主持下,广东机器制造厂在奥克兰市成立,开创了中国人前所未有的事业——研制飞机。经过2年的艰辛努力,终于在1909年9月制成一架可以载人的动力飞机。尽管这架飞机在第一次试飞时坠毁,但这并没有使冯如灰心,反而促使他继续探索改进之法,经历了6次失败后,终于在第7次制成了一架性能良好的双翼机,并于1911年1月~2月间,在奥克兰市多次做飞行表演。表演中,创造了时速为105千米的新纪录,并在100米高度上飞行了35千米。孙中山先生当时也在美国,在参观了冯如的飞行表演后,在冯如的飞机旁对着冯如和广大侨胞发表谈话时,第一句就是:“我们中国有杰出的人才”,对冯如的飞行成就大加赞许,并鼓励他回国为祖国同胞服务。

    1911年3月,冯如回到祖国。不久,辛亥革命爆发,冯如即投身革命,参加广东革命军,被任命为陆军飞机队队长。这支飞机队虽因筹备不及,未能参加北上作战,但却增强了革命军的声势。

    1912年8月25日上午,冯如在广州燕塘大操场做飞行表演时,因飞机坠地失事而受重伤,经医院抢救无效而不幸牺牲。

    冯如牺牲后,广东军政府陆军司下令表彰其开创中国航空事业的功绩,说“冯如以聪慧之姿,习飞行之术,殚精竭智,极深研几,不期初次试验,遽遭伤死,当从优抚恤,以慰前烈,俾旌来者。”并经临时大总统批准,按少将级军官阵亡例,拨款银元1000元抚恤其家属,并将其事迹宣付国史馆。

    冯如死时29岁,葬于广州黄花岗72烈士墓陵园内,碑文正面镌字为:中国始创飞行大家冯如之墓。

    飞机升空与气流的奥秘

    我们知道热气球上天是因为气球内的气体比空气轻,产生了向上的浮力。那么飞机在空中不掉下来,是与飞艇一样依靠浮力吗?不是。它靠的是空气流动时产生的作用力。

    最初试造飞机的人并不了解这种作用力,只是从风筝上天得到了启发,知道比空气重的东西依靠风的力量可以升空。为了揭开升空的秘密,了解这种空气的作用力,人们不断地做滑翔机的飞行试验,利用山坡迎风一面的上升气流进行滑翔飞行。那时飞行原理和气动力方面的知识虽然积累得很少,但实践者却凭经验造出了能够飞行的飞机。他们将机翼做成薄薄的拱形,这样就可以利用机翼产生的升力飞行了。

    最初的飞机很不完善,机翼是模仿风筝造的,在骨架上蒙一层薄布或薄板,这种飞机常常会突然倒栽下来。随着人们试验的深入和经验的积累,人们弄清楚了,要飞机不出事故,机翼的剖面形状应该是圆头尖尾的。

    现代飞机的机身和发动机等都是用金属做成的,不是铝合金就是合金钢。飞机还要载货或载人,重量很大,要使飞机升空,就得利用空气流动时产生的气动力。

    为了更好地了解飞机升空的秘密,就先得了解低速飞机的机翼是怎样产生升力的。

    低速飞机的机翼,不管它的平面形状(从上往下看)如何,从顺着来流的方向(即纵向)竖切一刀的话,其剖面形状总是:圆头、尖尾、弓背。

    机翼剖面由于机翼的存在,气流被分成两路绕机翼而过,由于机翼上下翼面的形状不同,则绕流的气流也将有不同的变化,气流沿着上翼面到A点,速度这时变化最大,超过了飞机的速度,后来逐渐减小。气流流到后缘处,速度差不多降到和远前方来流未经扰动时的速度一样大小,速度就是这样先快后慢地变化。科学家们经过分析知道:流过翼面的空气速度越快,它受到的压力就越低。因此,上翼面受到的气流压力也必先下降,到某一点压力达到了最小值,然后逐渐回升,到了后缘附近,上翼面的气流压力基本上和远前方气流的压力差不多了。

    沿上翼面流动的气体,过了前缘不远,直到后缘为止,流速都大于远前方气流的速度,因此气流作用在上翼面的空气作用力是吸力。吸力可以看成是一个向上提升飞机的力。

    沿着下表面走的气流,在机翼前缘附近某一点流速降到零,过此点之后,气流速度逐渐回升,到后缘气流速度还是没有超过远前方来流的速度,只是和原来差不多。因而作用于下翼面的空气作用力是向上的压力,所以整个下翼面受到的是一个向上托的力,这就是飞机的升力。

    上翼面的吸力和下翼面上托的力,合起来将整个飞机机翼向上举起,这就是作用在机翼上总的空气作用力。机翼产生向上升力必须具备的条件是:空气一定要流动(如风吹起来)或者飞机一定要滑动,如在跑道上滑跑,才能产生向上的升力;否则,飞机是不会升起来的。

    翼面上受到的压力都是和各部分表面相垂直的。由于翼剖面的形状相当扁平,而且飞行时整个机翼和迎面风之间的倾角(一般叫冲角或攻角)也不大,所以这个总的空气作用力的指向几乎总是垂直于远前方来流的方向(即飞行的方向)的。这个力量有两个作用:一个是产生向上并垂直于远前方的气流(即飞行)方向的力,将飞机升起来;另一个则是产生平行于来流方向的力,将飞机的速度减慢下来,阻止它向前飞行。飞机为什么要装上发动机?其作用就是为了克服使飞机停下来的阻力,让飞机跑起来,产生升力。

    当飞机平飞时,远前方流来的气流是水平的,飞机的重量是垂直向下的,而升力是竖直向上的,当升力不小于飞机的重量时,就托住飞机,使飞机保持在空中不掉下来。

    飞机的升力主要是由机翼产生的。对于正常布局的飞机,后面的尾翼产生的力是向下的,不利于飞机,而新式的鸭式布局就对飞机增加升力很有利。

    了解了上面的知识,我们便很容易理解为什么飞机在起飞前一定要沿着跑道滑行。当飞机滑行时,空气飞快地流过机翼和机身的表面,当飞机滑跑的速度越来越快时,空气流动的速度也就越快。如果飞机滑跑的速度超过某一速度,空气作用在机翼上的升力正好等于整个飞机的重量时,飞机就可以顺利地上天了。

    我们也可以知道,原来说流过弯弯的拱形面时,上面的气流快,下面的气流慢,这样正好产生了升力。正是利用这一原理,飞机设计师总是要将飞机的机翼做成前面稍向下弯,后面装上可以活动的襟翼,这样飞机起飞时,只要将襟翼放下来,使两个机翼弯曲得更厉害,便会产生更大的升力了。当然不是越弯越好,这里面有很多复杂的学问,只有进行专门的研究才会清楚,这里就不详细介绍了。

    知识点飞机滑跑与起飞速度

    普通飞机在起飞的时候都要沿着跑道滑跑一段时间,以达到起飞速度。我们已经知道,飞机起飞一定要克服重力,那么它所需要的升力L至少要等于重力才能起飞。飞机起飞时所需的升力公式为:L=0.5×ρ×v2×S×C1,ρ为空气密度,v为飞机与空气的相对速度,S为机翼面积,C1为升力系数。

    因此,有变形如下:v2=2L/ρ×S×C1=2G/ρ×S×C1。确定了一架飞机的起飞重量G,即可确定该飞机的起飞速度。

    观察公式可发现,飞机的起飞速度与起飞重量、空气密度有关(因为型号确定,机翼面积和升力系数即确定,可视为常数)。因此,同一种型号的飞机,装载不同,起飞机场不同,实际的起飞速度也是不一样的。实际中,飞机最小起飞速度一般是220~300千米/小时,目前有些型号的战斗机起飞速度也就是215千米/小时。

    飞机的设计与制造流程

    在莱特兄弟制造飞机的20世纪初,人类制造飞机是无章可循的,那时人类正处在对飞行器设计的探索阶段,如何设计飞机,怎样制造飞机都凭人的直觉和经验,怎样设计和制造最科学,设计师们几乎一无所知。莱特兄弟的第一架飞机不就是将本该放在飞机尾部的升降舵设计在飞机的头部了吗?随着人类设计飞机的经验越来越丰富,飞机的设计和制造形成了一套几乎不变的程序,人们将积累的设计经验和用生命换来的教训写进飞机设计书中,让后人少走弯路。

    现代飞机,无论是战斗机、轰炸机等军用飞机,还是民航客机、运输机,它们的设计制造过程几乎是相同的。

    首先是飞机的用户提出对飞机的性能要求。比方说,要制造一架战斗机,空军的有关部门就应该提出战斗机的性能要求,如飞机的速度、每分钟可以爬升多少米、起飞距离、最大航程、最小的转弯半径,能够针对别国某种型号的战斗机进行有效的空中格斗等等,设计部门根据这些要求,开始着手设计方案;一旦这种设计方案完成,就开始下一阶段的风洞实验。

    在介绍这种实验之前,我们先讲讲风洞为何物。大家知道,飞机在天上飞行,空气基本上是静止的,而飞行员则感觉有大风迎面扑来,飞行越快,风也就越大。人们在设计和制造飞机时,就利用了这种相对运动的原理,建立了专门的实验设备,它能够在一个管道内产生一股一定速度的气流,这种气流可以达到声音传播速度的好几倍,将设计方案中的飞机做成一定比例大小的模型,放在这种管道内,利用一些特殊的设备,测量模型上受到的气流对它的作用力(如升力、阻力),这种实验设备被人们称作风洞。飞机的模型固定在风洞内,气流迎面吹来,就像飞机在空中飞行一样。

    经过风洞实验以后,根据收集到的数据,对方案进行修改,直至达到满意的程度为止。

    现代计算机的计算速度和数据存贮量都很大,可以通过数学方程的求解计算,知道设计方案中飞机的受力情况进行修改,可以减少昂贵的风洞实验次数,降低设计飞机的费用。

    一旦外形确定以后,就可以规划飞机内部的装置和结构,做出几架样机来,利用这几架样机再进行以下几项实验:

    将样机放在飞机场的振动架上模拟飞行时的振动情况,日夜不停地进行振动实验,看看飞机的牢固程度。另外还做一些冲击实验,重压和牵拉实验来看看飞机到底能承受多大的破坏能力。

    另外对一些样机进行试飞实验来检验它的飞行性能和稳定性能,不断修改,直到能使飞机驾驶员感到驾驶方便为止。

    在所有的实验完成以后,由用户来进行验收,在用户认为符合最初提出的性能要求以后,飞机才算正式定型,开始批量生产,投放市场或者装备空军使用。

    知识点运动与静止

    运动是指宇宙中发生的一切变化和过程,既包括保持客体性质、结构和功能的量变,也包括改变客体性质、结构和功能的质变。运动不是以物质外部附加给物质的可有可无的性质,而是物质本身固有的内在矛盾决定的不可缺少的性质和存在方式。运动和物质不可分离。“没有运动的物质和没有物质的运动是同样不可想象的”,也就是说,运动是绝对的。

    静止是从一定的关系上考察运动时,运动表现出来的特殊情况,是相对的、有条件的。例如地面上的建筑物就其对地面没有做机械运动这一点而言是静止的。但是这种静止仅仅是从一定的“参考系”看来才是如此,从别的“参考系”看来又是运动的,如建筑物随地面一起围绕着太阳运转,又随太阳系一起在银河系中运转。

    蜂窝结构给人类的启示

    如果你有机会,可以去仔细观察一下蜜蜂的蜂窝,它的构造令人非常惊叹:它异常精巧,由无数个大小相同的房孔组成,每个房孔的一面都是正六边形,就好像照着图纸施工出来似的,整个房孔是一个正六面体,也就是说它的每个面都是正六面体。两个蜂房之间隔着一堵蜂蜡做成的墙。更奇怪的是,世界上无论哪里的蜜蜂,它们筑造的蜂窝都具有相同的结构。

    蜜蜂窝结构蜂窝的结构最开始只引起科学家的注意,他们用数学的方法证明了蜜蜂的“聪明才智”。蜜蜂用最少的蜂蜡造成了最大的空间房子,而且结构牢固。后来,蜂窝身体的这种奇妙结构也引起飞行器设计师们的注意。

    人们在设计飞行器时,总希望飞行器本身的结构轻一点,这样可以装载更多的东西,比如人员、武器和燃料,但同时又要保证飞行器必须是结实牢固的。飞行器设计师们为解决这一对矛盾煞费苦心,真是“斤斤计较,两两计较”。你可知道,要想让1千克的物体达到第一宇宙速度,也就是说达到每秒钟飞行9.71千米的速度,所需要的能量相当于把1000袋水泥搬运到20层高的大楼上所需要的能量。就目前人类达到的航天技术而言,如果发射一颗1吨重的卫星,需要一枚50~100吨的运载火箭来发射升空,也就是说,每减少1千克卫星的重量,运载它的火箭就可以减轻500千克。由此可见,减轻飞行器的重量有多么重要。人们从蜂窝的结构上找到了解决这一问题的答案。

    在制造飞机机翼、航天飞机和火箭时,人们用金属、玻璃纤维或复合材料做成蜂窝状的格孔,再用2枚金属板夹接起来,就成了具有蜂窝结构的飞行器部件。这样加工出来的飞行器部件,结构轻,又具有很牢固的结构强度,不容易传热,又有很好的隔音效果。

    如果你想试试这种结构的奇妙之处,不妨用硬纸板做一块具有蜂窝结构的模型,试试它的牢固、隔音程度。

    知识点仿生学

    模仿蜂窝结构来完善飞行器的部件是在仿生学的基础上实现的。所谓的仿生学,就是指模仿生物建造技术装置的科学,它是在20世纪中期才出现的一门新的边缘科学。

    仿生学研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和机器,创造新技术。从仿生学的诞生、发展,到现在短短几十年的时间内,它的研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力。

    克服音障的超音速飞行

    当战斗机的速度达到每小时七八百千米时,驾驶员发现,尽管一个劲儿地加大油门,飞机的速度也不会增加,飞机俯冲时也往往不听操纵,有自动低头的趋势,有时还剧烈地振动,左右摇摆等。这是为什么呢?原来是飞机速度已经接近空气中声音的传播速度——音速。这一飞行上的难题,当时叫做音障,顾名思义,就是超越音速是飞行中的障碍。

    那时人们只有低速飞行的经验,只是在枪弹、炮弹飞行方面早已积累了许多超音速的运动知识,枪弹、炮弹一出膛的速度就是超音速了。但是对于物体由低速加快上去、接近音速、最后超过音速的过程是不清楚的,以为飞机的速度接近音速时会有一个难以逾越的界限。

    20世纪50年代中,人们进行了超音速飞行,当时这是飞行史上十分激动人心的事情。几十年过去了,现在人们谈论起超音速的飞行并不觉得有什么激动的,好像超音速飞行是天经地义的事情。但是你可否知道,当时人们在向音速冲击时,遇到了多大的困难啊!

    声音的速度有多大呢?在日常生活中,我们有许多平时不曾深刻体会的实际经验,你一张嘴说话,我立即就能听到,似乎声音的传播不需要时间,但实际上,声音从一地到另一地的传播是需要时间的,只是因为它的传播速度相当快而已。在海平面上温度为15℃时,它的速度是每秒340米,即每小时1224千米,而说话的人与听话的人之间的距离又非常近,所以感觉不出传播所花的时间。在雷雨天,我们常能看到这样一个现象:先看到闪电后,才能听到远处传来的隆隆雷声。实际上闪电和雷声是在云层中同时产生的,只是因为闪电以光速每秒30万千米的速度传播,而雷声是以音速传播的缘故。

    声音是怎么一回事?我们听到的声音,是发声物体的振动,通过空气传到我们耳膜的一种感觉,而它本身就是物体振动。物体振动之后,必然会带动物体周围的空气一起振动。就是说,物体振动时会使和它相接触的空气层时而受到压缩,时而又得到膨胀,这种时而压缩时而膨胀的运动,会从一层空气传到另一层,不断地向四面八方传播,音速实际上指的就是这种扰动由近向远的传播速度。

    声音的传播速度与空气的温度有关。在海面上,空气温度为15℃时,其声音传播的速度为每秒340米,在平流层里,温度为-56.5℃时,音速为每秒296米。

    飞机在空中飞行,不断地扰动四周的空气,这些扰动也就以音速传播开了。

    通常人们将飞机的速度是音速的多少倍数称为马赫数,这是为了纪念一位名叫马赫的科学家而命名的。如果飞机做超音速飞行,马赫数显然就大于1了;如果做小于音速的飞行,马赫数就小于1。

    飞机一接近音速飞行,会遇到许多低速时不会遇到的复杂现象,这时飞机的阻力会变得很大。为了克服这些阻力,人们将机翼做得比以前薄了许多,以减小阻力。

    后来,人们发现将机翼做成向后倾斜的形状,做超音速飞行时,可以减小许多阻力,同时将机翼的前面做成尖头,而不是像低速飞行时那样,将机翼前缘做成圆头的。这样一来,飞机的阻力便会减小,速度便会加快。

    今天的战斗机机翼的前面几乎都是向后倾斜的,我们叫它后掠翼飞机。当这种飞机起飞时,速度很低,这时它的机翼张开,像低速飞机一样并不后掠,当速度越来越快,并且接近音速时,它的机翼便后掠起来。速度越大,后掠便越厉害。

    超音速飞机现代的超音速战斗机,飞行马赫数一般在2左右,只有很少几种马赫数超过了3的飞机,个别一两架试验性飞机马赫数超过了6。宇宙飞船返回地球,洲际导弹重返大气层时,是做高超音速飞行,马赫数可以达到10以上。这时由于与空气剧烈地摩擦,飞行器表面的温度非常高,如果制造这些飞行器的材料不能耐高温的话,便有可能被“烧穿”。为防高温,美国的航天飞机便在四周、尤其是在头部贴上了一层用陶瓷材料做成的防热瓦,才安然无恙地返回了地球。

    知识点音障和音爆

    音障是一种物理现象,当航空器的速度接近音速时,将会逐渐追上自己发出的声波。声波叠合累积的结果,会造成震波的产生,进而对飞行器的加速产生障碍,而这种因为音速造成提升速度的障碍称为音障。

    突破音障进入超音速后,从航空器最前端起会产生一股圆锥形的音锥,在旁观者听来这股震波有如爆炸一般,故称为音爆或声爆。强烈的音爆不仅会对地面建筑物产生损害,对于飞行器本身伸出冲击面之外部分也会产生破坏。除此之外,由于在物体的速度快要接近音速时,周边的空气受到声波叠合而呈现非常高压的状态,因此一旦物体穿越音障后,周围压力将会陡降。

    可以直上直下的直升机

    人类很早就想造出可以直上直下的飞机。直升机,从它的名字意思理解,就是可以直上直下地飞行。我国古老的玩具竹蜻蜓,在原理上就是垂直上升的直升机。不过,人类造出的第一架直升机却比飞机要晚二三十年,原因是制造固定机翼的飞机比制造直升机简单。但是,直升直降的飞行器和能在空中慢慢地飞、甚至能悬停的飞行器相比,有很多独有的用途,特别是在军事上。直到20世纪30年代末才制造出了真正能用的直升机。

    为了了解直升机,让我们先看看飞机螺旋桨是怎么拉着飞机前进的。我们知道,一个木螺钉向木头钻进,只要旋一周,它就会钻进一段距离,螺旋桨在空中旋转,简单地说也像螺钉钻木一样,螺旋桨在空气中旋转产生拉力,使飞机前进,不过空气不是固体而已。

    螺旋桨螺旋桨的叶片在旋转时就像旋转着的机翼一样,不过这时产生的力不是向上的升力,而是向前的拉力。与机翼一样,这个力也是与桨叶几乎垂直的。你不妨想想,如果这个螺旋桨装在机背上,不就又将拉力变成了使飞机向上的升力了吗?不过,普通飞机,螺旋桨的拉力是为了对付阻力的,它的拉力只等于飞机重量的十几分之一,根本不能把飞机直接拉上空中。可是,同样马力的发动机用在直升机上,却能把同样重量的直升机垂直拉到空中。这是为什么?

    原来学问在旋翼的长度上——螺旋桨(直升机上的叫旋翼)的直径。直径越大,拉力也就越大。一旦拉力比飞机的重量还要大时,直升机就可以垂直升空了。因此,直升机的旋翼叶片要很长,才能产生较大的升力。但同时也带来了新的问题,直升机的旋翼直径很大,如果转速还那么高的话,叶尖处的速度就超过了音速,阻力就会大得受不了。因此,直升机的旋翼所用的转速特别低,每分钟只有二三百转,而一般飞机的螺旋桨每分钟1000~2000转。

    为什么直升机有了主旋翼还非要做一个蜻蜓一样的尾巴,上面再装一个小尾桨,这是怎么一回事呢?这个小东西自有它的妙用,而且必不可少。

    凡是用单个主旋翼的直升机都少不了一个尾桨。这个尾桨的位置在尾杆的后端头上,它的尺寸和普通小飞机的螺旋桨差不多(2米左右,桨盘方向也和普通螺旋桨一样是竖的,产生的拉力是水平的,不过指向不是前进方向,而是横的)。这个尾桨是为了克服掉主旋翼给机身的扭转作用。没有它,悬在空中的机身会向主旋翼的旋转相反的方向旋转。试想,我们在房间里装上一个吊扇,如果不将它的底座固定在天花板上,只让它吊在那里,那么在吊扇开动的同时,底座也会转动。这个问题在直升机上是很严重的,因为直升机旋翼的转速特别低,旋翼特别大,因而相反的扭转作用也特别大。直升机又没有固定机翼可以对抗这个相反的扭转作用,所以要用尾桨。为了让它少消耗马力,尾桨尽量把它放得离旋翼的主轴中心远些。机尾越长,尾桨就能产生足够的扭转作用来平衡主旋翼产生的反作用。这就是为什么单旋翼的直升机都向后伸出一条长尾杆的缘故。

    有些大的直升运输机,是前后两个大的旋翼,这时就不用装小的尾桨了。因为这时只要这两个旋翼转动的方向相反,就会将各自产生的使直升机扭转的作用相互抵消掉。这好比我们拧干湿衣服,拧到一定的时候,两只手怎么拧也拧不动了一样。两个旋翼调整好各自的转速,直升机就不会扭转了。不过,一定要记住:这两个旋翼的旋转方向一定要相反。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架