地球文明访问外星的使者——空间探测器便在这种背景下应运而生了。空间探测器是一种无人航天器,装载有科学探测仪器,由运载火箭送入太空,飞近月球或行星进行近距离观测,做人造卫星进行长期观测,着陆进行实地考察,或采集样品进行研究分析。这对人类了解外星球具有很大的意义。
人类所发射的空间探测器已经为人类征服太空做出了很大的贡献,它们不但为人类的登月计划开辟了道路,而且已经遍访了太阳系各大行星及其卫星等。目前,人类发射的空间探测器正在向太阳系外更远的星球跋涉。我们有理由相信,空间探测器必定在人类征服太空的旅程中做出更大的贡献。
探测太阳系的自动航天器
宇宙是无限的。天文学把宇宙中的各种各样物体都称为天体。自古以来,人们一直在探索着天体的起源和变化,当然观测和研究的最多的是我们地球所在的太阳系。经过好多个世纪的知识积累,人类弄明白了我们太阳系的基本构造。有八大行星围绕太阳公转,按照它们离开太阳的距离,从近到远的次序是水星、金星、地球、火星、木星、土星、天王星、海王星。除水星和金星外,其他行星都有自己的卫星,它们围绕自己的行星运转,例如月亮是我们地球的天然卫星。过去,由于科学技术的限制,天文学家们只能用望远镜对各大行星及其卫星进行观测研究,因此对太阳系及其八大行星的了解还是很少很少的,特别是对遥远的行星以及被厚厚的大气包围着的行星,只能看到一个大概的形状。随着航天科学技术的发展,科学家们设计了各种各样的自动航天器,并利用各种先进的航天仪器对太阳系各大行星临近考察,30年来使人类对太阳系的知识迅猛增长。
太阳系八大行星访问地外星球的空间探测器科学家们利用自动航天器对太阳系内天体的探测方式有飞越、环行、着陆、取样返回和载人登陆等多种方式。根据天体离开地球的远近,采用的探测方式也不同。月球是地球的卫星,是最近的一个天体,只有38万千米的距离,由易到难,从飞越、环行、着陆、取样返回到载人登陆的所有探测方式都用过,因此了解最全面;对地球的前后两个邻居金星和火星,采用了从飞越、环行到着陆三种方式进行了探测;其余行星到目前为止只是用飞越方式进行临近拍照和其他探测。
随着探测理论和技术的进步,自动航天器在行星探测过程中采用引力跳板原理,大大提高了航天器的飞行速度,缩短了到达行星探测区的时间。由于引力跳板作用的优越性,火箭只要具有比较低的初始速度,就可飞向遥远的太阳系空间,对行星进行探测。
对行星的探测,是从金星开始的。美国和前苏联对金星发射的自动探测器最多,探测也最充分。这种做法是很自然的,因为它离地球最近,科学家们总希望由近及远地探测行星,在技术上也较易实现。另一个原因是有一种说法,金星与地球有亲缘关系,弄清金星,对研究地球也会有帮助。前苏联在1961年首先向金星发射“金星1”号自动探测器,但在飞到离金星10万千米处时通信中断,就近探测金星未能成功。1962年8月27日,美国向金星发射“水手2”号自动探测器,同年12月4日,从距金星34600千米处掠过,世界上第一次实现了对金星的飞越式就近考察,拍摄到金星的照片。首次实现对金星表面软着陆的是前苏联在1970年8月17日发射的“金星7”号,是在同年12月5日实现的。
对火星的探测,前苏联曾多次发射火星探测器,并进入火星轨道,其中“火星3”号于1971年12月着陆火星表面。美国发射的“海盗1”号和“海盗2”号火星探测器在1976年7月和9月实现了软着陆,获得大量火星照片与信息。
美国发射的“水手10”号探测器,在1974年3月29日,于日心轨道上两次与水星相遇,获得水星第一批照片,并探测了水星磁场。美国发射的“先驱者11”号探测器和“旅行者1”号及“旅行者2”号探测器成功地探测了其他行星。
1985年9月11日,美国发射的“国际彗星探险者”在距地球7000万千米处与贾科比尼·津纳彗星相会。前苏联发射的“韦加1”号、“韦加2”号探测器于1986年3月6日和3月9日分别进入哈雷彗星的包层。欧空局发射的乔托探测器于1986年3月14日在距哈雷彗星的彗核520~550千米地方通过。日本也发射2个探测器研究哈雷彗星。所有这些哈雷彗星探测器获得的众多信息使人类第一次对这颗彗星有了全面的认识。
知识点宇宙
在汉语中,“宇”和“宙”本来是两个单独的词语。“宇”的意思是上下四方,即所有的空间;“宙”的意思是古往今来,即所有的时间。所以“宇宙”就有“所有的时间和空间”的意思。西方早期对宇宙的理解则侧重于从混沌之中产生秩序。
从东西方对宇宙的理解中,我们不难看出中国古人强调的是宇宙空间和时间的整体性,而西方人强调的则是宇宙的秩序。实际上,空间与时间的整体性以及有序的秩序性都是宇宙的特点。随着天文学的产生和发展,人们对宇宙的认识逐步清晰起来。现在,人们一般认为:宇宙是由空间、时间、物质和能量所构成的统一体。一般理解的宇宙指我们所存在的一个时空连续系统,包括其间的所有物质、能量和事件。
金星探测器成绩斐然
金星比地球略小,半径为地球半径的0.96倍,质量为地球质量的0.82倍,密度为地球密度的0.96倍,是最类似地球的大行星。它绕太阳公转周期为224.7天,平均运行速度每秒34.99千米,最近时离开我们只有4100万千米,因此是距离地球最近的一颗行星。金星亮度仅次于太阳和月亮,在黎明前出现时,称为启明星,在黄昏出现时,称为长庚星,所以它又是人们最熟悉并能用肉眼观看到的天空中最明亮的一颗行星。金星也像地球一样自转,但速度极慢,自转一周需用243个地球日。更奇特的是其自转方向和地球等太阳系内的其他行星自转方向相反。在金星上望太阳,太阳从西方升起,落在东方。金星周围有一层浓密的大气,里面云雾弥漫,阻挡了人们的视线,科学家从地面用望远镜看不清金星的真面目。因此,在自动航天器应用微波雷达技术就近考察之前,人类对金星的了解很为肤浅。雷达不受云雾影响,通过发射脉冲信号探测,能获取金星表面信息并在自动航天器上形成清晰图像再传送回地球,科学家就能把金星表面看得一清二楚了。
金星表面照片自从1961年2月12日前苏联首次发射金星探测器之后的20多年的时间里,苏、美两国先后发射了30个金星探测器,其中有21个成功地对金星表面进行了综合考察。有一批探测器进入轨道成为金星的人造卫星,并有若干个着陆舱对金星表面实现了软着陆,对金星的土壤、岩石样品和云层进行探测,向地球发回了大量宝贵的资料和照片,揭开了金星的许多奥秘,增进了人类对金星的认识。
考察确定,金星具有地球上的许多地质结构特点,它的地貌和地球一样复杂和多姿多彩。60%~70%的金星表面覆盖着极古老的玄武岩平原。金星上耸立着四大高原。最高的麦克斯韦尔峰高达11600米,比周围地区高出3000米,比地球上最高的珠穆朗玛峰高出近1/2。
金星大气主要由占其97%的二氧化碳和少量氦、氖、氮和水蒸气组成。金星25千米厚的二氧化碳大气层阻挡75%的金星热辐射,由此而产生的温室效应使金星表面温度达470℃。大气压高达90个地球大气压。探测信息表明,金星和地球一样,不同区域有不同的大气压和温度,但都在90个大气压和475℃上下浮动。
在金星大气中发现氩40和氩56,并测出其准确比例为200∶1,这说明金星和地球存在亲缘关系的说法是有道理的。对金星表面太阳光照强度,自动摄像机向地球传回的分辨率很高的图像显示,金星上很明亮,它本身是黄褐色的,布满多层浓云的天空是橙黄色的。
美国和前苏联都用雷达测绘了金星表面地形图,测绘面积占金星表面积的90%,可以说,对金星的一系列探测,已初步揭开了它的面纱。到目前为止,金星是人类了解最多的一颗大行星。
然而,科学家对金星的探测与研究,意犹未尽。他们认为获得的金星表面雷达图像清晰度、分辨率还不够理想,无法解答令科学家着迷的一些问题。例如,如果说金星和地球有亲缘关系,那么,它的表面是否也像地球一样分裂成移动的地壳板块呢?金星显然已成为无法控制的温室效应的牺牲品。那么,人类生存的地球是否也会面临金星同样的厄运?“先驱者”号、“金星”号探测器发现金星上可能曾经有过水。那么,金星上是否有河床和海滩?据前苏联金星着陆舱传回地球的信息知道,金星经历的侵蚀远比地球少,因此我们有可能把金星作为研究对象来了解地球早期大陆形成的情况。
有鉴于上述种种问题,美国决定研制新一代金星探测器,即“麦哲伦”号金星探测器。它已于1989年5月由“亚特兰蒂斯”号航天飞机在太空施放,并在1990年8月10日和金星交会,进入了离金星表面最高点为8028千米、最低点为249千米的金星椭圆形轨道。它大约每3小时9分钟绕金星运行一周。每次飞过轨道的低点部分时,探测器将直径3.6米的碟形天线指向金星表面并发射雷达探测脉冲,摄取16100千米长、24千米宽的区域的一幅幅金星表面照片。“麦哲伦”号金星探测器环绕金星飞行2000圈,用243个地球日(金星自转一周)完成对金星90%以上面积的测绘工作,它的雷达系统将透过云层揭开金星的面纱,获得迄今为止最详细的图像,其分辨率足以发现金星上一个足球场那样大小的物体。
现在“麦哲伦”号探测器已经测绘完90%以上的金星表面积,发回的照片表明,金星存在着活火山熔岩流、陨石坑、沙丘、高耸的山岭和巨大的峡谷。科学家通过它的探测要对金星进行天文地球动力学研究,例如板块构造以及研究与地球相关的问题。对金星资料的进一步研究与分析正在进行中,不久科学家们将会向人们提供更多的金星研究成果。
知识点温室效应
温室效应,又称“花房效应”,是大气保温效应的俗称。大气能使太阳短波辐射到达行星表面,但行星表面向外放出的长波热辐射线却被大气吸收,这样就使行星表面与低层大气温度增高。因其作用类似于人类栽培农作物的温室,故名温室效应。
温室效应在地球上尤其明显。自工业革命以来,人类向大气中排入的二氧化碳等吸热性强的温室气体逐年增加,大气的温室效应也随之增强,已引起全球气候变暖等一系列严重问题,引起了全世界各国的关注。
寻觅火星生命的空间探测器
火星也是一颗类似地球的行星,比地球小。它的半径为地球的0.53倍,质量为地球的0.11倍,密度为地球的0.71倍。它绕太阳公转的周期为687天,平均运行速度每秒24.11千米,离开我们约9000万千米,所以是地球的另一个近邻。火星和地球一样也自转且速度和地球的速度几乎相等,自转一周为24.6小时,因此火星上一天和地球上一天极相似。多少年来,火星一直是人类心目中最富传奇色彩的行星。在火星上是否有过生命存在是科学家们不断猜测和争论的问题。
火星上确实存在着大气,虽然和地球相比,它的大气层很稀薄。但那里的气候一度比较暖和,有过水及河流。俗话说:“水就是生命。”因此现在还很难说火星上没有生命。在火星表面那些具有足够热量的地方,生命有可能延续下来。总之,我们对火星了解很少,猜测、争论还缺乏有力证据。发射自动航天器对火星进行探测,揭开火星奥秘是解决人们对它争论的唯一办法。
美、苏两国为探索火星都作出了举世瞩目的努力。1971年5月30日,美国成功发射了“水手9”号探测器,并在同年的11月13日成为美国第一颗人造火星卫星。“水手9”号探测器绕火星飞行时拍摄了7000张照片并作了大批光谱测量。这些照片证实火星表面呈现许多陨石坑,也发现若干火山。火山之一奥林匹斯山高为26000米,约为珠穆朗玛峰高度的3倍。科学家从这些高分辨率照片上还发现火星表面的一些地区,有一些类似四角金字塔的“建筑群”,在火星的南极地区专家们又发现几何构图十分方正的结构体,这不禁提出一个扣人心弦的问题:火星上是否有高级智慧生物生活过?有些研究火星照片的专家提出这些结构体是人工建造的大胆设想。另有一部分研究人员面对火星照片上这些令人难以置信的“建筑群”,作出了非人工建造的结论。他们认为这些结构体都是自然形成的物体。科学家们对火星的奥秘继续进行着猜测和争论。
火星表面照片1975年8月20日和9月9日,美国又先后发射了“海盗1”号和“海盗2”号自动探测飞船,并分别在1976年6月19日和8月7日进入了火星轨道。专门用于研究火星生命的这两个探测飞船的着陆舱则分别在同年7月20日和9月3日在火星表面实现了软着陆。着陆舱从火星表面向地球传送了它拍摄的火星图像,自动实验室化验了火星土壤。母船在火星轨道上对火星进行观测,绘制火星表面地形图。“海盗1”号探测器也拍摄到了类似埃及金字塔的“废墟”。在“金字塔城”东侧9000米处竟还发现了形状类似于人类的石质结构体以及奇特的黑色圈形构成体。
1971年5月19日,前苏联发射“火星2”号自动探测飞船,同年11月27日成为前苏联的第一颗人造火星卫星。紧接着,1971年5月28日,前苏联又发射“火星3”号探测飞船,其着陆舱从探测飞船本体分离后于12月2日在火星表面软着陆。其后,前苏联又多次发射火星探测器,其中“火星5”号、“火星6”号和“火星7”号进入火星轨道后,拍摄了大量照片,获取了火星大气资料。
美国的一大批科学家对“水手9”号、“海盗1”号和“海盗2”号等探测飞船拍摄的火星表面照片和收集的土壤化验数据进行了多年研究后认为:在火星的两极有水,在其表面也有水,离表面0.8千米深处可能还有液态水。火星的水比人们曾估计的要多得多。探测到的信息还确定,在火星上发现了尘旋风,高达0.5~7英里,这说明太阳足以使火星大气变暖并显著地升温。
对于火星上是否存在过生命,“海盗”号探测飞船获得的信息使科学家得出了否定的结论,这未免使人有些失望。
前苏联的专家对美国科学家关于火星上没有生命存在的论点提出怀疑。第一,他们认为探测飞船着陆舱着陆点是两个偶然点,在它的表面很难发现什么。第二,探测方法本身不完善。举例说,利用单个仪器也不可能在地球南极就地发现生物活动。如果把标本取回放在温暖的地方,给微生物提供大量生长条件,可能会发现生物活动。现在知道,尽管地球南极的严酷气候条件十分接近火星,但那里仍然蕴藏着生命。所以前苏联专家认为目前还不能排除在火星上发现某种生命原始形态的可能性。
不论是美国还是俄罗斯科学家,下一步的目标是把火星标本带回地球,利用一切最完善的科学手段对它进行研究。“海盗”号探测飞船所绘制的火星表面详图,将为今后发射载人火星飞船选择最好的着陆点。
火星有两颗小卫星,即火卫1和火卫2,它们是1877年首次被发现的。1971年“水手”9号探测飞船成功拍摄了火卫1的照片。“海盗”号探测飞船又分别从89千米和23千米距离外给火卫1和火卫2拍了照片。两颗卫星都像是患病的土豆,奇特的形状可能是由于他们被陨石轰击所造成的。火卫1直径22千米,距火星表面7570千米,它像被咬过一口,这个缺口就是斯蒂克尼火山口。火山口直径11千米,占据了半个火卫1。火卫2直径只有11千米,距火星表面20700千米。火卫1和火卫2外形都呈椭圆形,长轴永远指向火星,为观察火星提供了极好的姿态。它们的轨道接近火星赤道,近似整圆。火卫1离火星这样近,绕火星一周只需要7小时39分钟。倘若站在火星上,就会看到这个“月亮”从西边升起,以4.5小时的时间迅速地飞越天空,其形状不断地变化着,在东边下山后6.5小时又匆匆从西边出现。火卫1和火卫2的引力很小,如果一个人在地球上能跳起15厘米高,则他在火卫1上能跳起244米高,而在火卫2上能跳457米高。
火卫1表面覆盖着一层粉末,从太阳系诞生以来就是如此。火卫1的年龄、起源和物质以及岩石的特性将为揭开太古年代的秘密提供线索。因为它类似于碳质球粒状陨石类小行星。前苏联发射的“福波斯”号火卫1探测器,虽然通信中断,但在通信中断前也向地面发回了一组火卫1的照片。专家们从照片得知,火卫1表面的物体近似于一种含碳球陨石且表面成分很不均匀,其矿物层中含水量比设想的要少。火卫1白天温度约27摄氏度。
有的科学家认为,火卫1可以充当人类在火星上着陆的转运站,因此火卫1已经引起人们浓厚的兴趣。有人猜测,除了月球以外,人类将要攀登的天体首先可能不是火星,而是火星的卫星火卫1或火卫2。
拜访木星的人间来客
木星是一个很远的天体,离地球约6.3亿千米,但很明亮,亮度仅次于金星,用肉眼可看到。在古代,天文学家就发现了木星。
木星表面照片已知木星自转周期只有约9小时50分钟,比地球自转周期快2.5倍,但它绕太阳公转周期是11.86年,平均运行速度每秒13.05千米。
木星周围有厚厚的稠密大气,表面常年呈现数条色彩斑斓的彩带和不断变化的红色斑纹区。它是太阳系中最大的一颗行星,体积比地球大1300多倍,质量相当于318个地球,几乎等于太阳系其他行星质量总和的2.5倍。从质量、成分和平均密度来说,木星和地球以及水星、金星、火星等类地行星均十分不同。根据以前获得的资料,木星不仅在成分上与太阳颇相似,而且在结构上也有相似之处。科学家们设想,在46亿年前,太阳云气体尘埃凝聚成太阳系时,99.86%的物质组成太阳,成为太阳系的中心天体,剩下的大部分组成木星,其他部分组成另外的行星和各种小天体。木星拥有16颗卫星,它和它的卫星构成的木星系统,就像一个小型的太阳系,科学家又推测木星系统的形成过程和太阳系的形成过程类似。
如果在形成太阳系时,最初云团中各成分比例均匀的话,由于木星质量特别大,氢气等较轻元素不易逃出它的引力场。因此木星的元素成分与46亿年前形成时应大致相同。从这个观点出发,人们制定了一系列木星探测计划,希望通过对木星的就近探测,直接测定木星大气中各种气体成分及其特性。搞清楚氢和氦在其大气中所占的比例,对研究太阳系的起源和演变会有极大帮助。
1973年4月6日,美国发射“先驱者11”号探测飞船,执行飞掠木星(1974年12月)和土星(1979年)的使命。1977年8月20日发射了“旅行者2”号探测飞船,半月后又发射了“旅行者1”号探测飞船。后发射的“旅行者1”号于1979年3月5日先行到达木星,同年7月9日“旅行者2”号也到达木星。
“旅行者1”号从距木星云顶286000千米上空飞越,提供了木星系统的新信息。木星的大气是复杂的,由氢和氦组成的稠密大气层之上是色彩斑斓的云层;木星大气的运动比预计的更加汹涌,似乎受到云顶底下深处某种力的控制;足以容纳几个地球的大红斑,是一个巨大的大气风暴,每隔6天沿逆时针方向转动一次;已发现木星周围有一个29~30千米厚的薄环。最大的意外是,在木卫1这个木星卫星上至少有9座活火山,有些火山的火焰高达280千米。其他已调查的木星卫星包括木卫2、木卫3和木卫4。木卫3的直径达5200千米,比土星卫星土卫6大,是太阳系内最大的行星卫星。
木卫1~木卫4“旅行者2”号从距木星云顶643000千米之内飞越木星,探测了条纹状的云、红斑、“白卵”、木星环(“旅行者1”号已发现的)和木卫1、木卫2、木卫4、木卫3和木卫5。另外,“旅行者1”号和“旅行者2”号还发现3颗新的木星卫星、极光和像地球上特大闪电一样的云顶闪电。
木星的密度很低,只是地球密度的0.24倍。对木星的就近探测证实它的主要成分是氢和氦。它是一颗由液态氢构成的巨大星球,除了有一个很小、可能是熔融的岩核以外,没有探测到任何的固体表面。
木星大气中82%是氢,17%是氦,其他成分仅占1%。这层大气层厚度约965千米。在木星云顶层之下965千米处,气态氢在1999摄氏度的温度和巨大的压力下,变成了液态氢。大约在25000千米的深处,液态氢在11000摄氏度的温度和300万个大气压下,变成了固态金属氢。木星上的氢和氦挥发得很少,基本上保持了原始星云的化学组成,内部是处在高温高压下的液态氢。
虽然“先驱者”号和“旅行者”号姐妹探测飞船成功地拍摄了有关木星及其卫星外貌和大气层的大量清晰照片,把人类对木星的认识向前推进了一大步,但是由于木星的云顶比较厚,无法弄清大气下层气体的状态,无从了解大气层内部各种状态参数随高度的变化,至今仍有许多奇特的现象无法得到合理的解释。为此,美国决定并设计了“伽利略”号探测飞船,用它对木星系统进行更详细地就近考察和科学探测,以进一步揭开木星世界之谜。
“伽利略”号木星探测飞船总重2550千克,由轨道器和大气探测器两部分组成。前者在木星的椭圆轨道上执行探测任务,后者深入木星大气层深处探测大气层的成分和物理特性。轨道器备有多种光学摄像装置、一个小型天线,用来向地球转发大气探测器发送来的数据。大气探测器总重为345千克,由制动防热罩和球形仪器舱组成。防热罩是个锥角等于120度的钝头圆锥壳体,为防御进入大气层时的气动加热,表面覆盖一层很厚的碳——碳烧蚀防热层。防热罩重量占大气探测器重量的一半。球形仪器舱除了装备大气组分探测计、质谱仪、氦气浓度计、测云计、辐射计、高能粒子探测计等多种探测仪器外,还有降落伞系统、无线电发射装置和少量能源。
“伽利略”号木星探测飞船本预备在1986年5月由航天飞机施放。由于“挑战者”号航天飞机在1986年1月失事而未能按计划执行。
直到1989年10月18日,探测飞船才发送上天。其飞行路线是独特的:先在1990年2月飞越并探测金星,从金星获得额外推力,随后于1990年12月飞近地球,进行照相和测量。按计划,它在1992年12月再次飞越地球之前和之后,各遇上一颗小行星,借助引力跳板,最后踏上飞向木星的轨道,全部行程长达6年以上。在环绕木星运行时,“伽利略”号将对它进行20个月的观测,同时探测飞船还将利用木星卫星的引力作用做一系列环绕飞行以考察木星的其余卫星。
1995年12月7日,探测器进入了木星的大气,成功地发回了信号,并在降落了57分钟之后,被木星发出的热力烧毁。但这57分钟大大地增加了我们对木星的大气和气候的了解。
“伽利略”号对研究木星的卫星也作出了很大的贡献。在“伽利略”号到达木星之前,人们一共发现了16颗木星的卫星。“伽利略”号到达后又发现了多个卫星。现在,这个数字已经上升到了63个。
由于受到辐射的破坏,“伽利略”号的摄影装置于2002年1月17日停止运作。由于工程师能够修复磁带的资料,因此它能在坠毁以前继续传送资料回地球。
从美国“伽利略”号探测器传回的最新的资料表明,在木卫2的表层下可能有海洋。这一新证据再次为科学家们早先根据资料作出的“木卫2上有水”的假设添加了重量级砝码,并引起了生物学家对木卫2上是否存在生命的争论。
“伽利略”号探测器在距木卫2上空351千米的地方飞掠而过。令人惊讶的是,木卫2的地磁北极点的地理位置在变化,并且移动得很频繁,几乎每5.5小时就移动一定距离。
这个结果让许多科学家困惑:究竟是什么力量驱使木卫2的地磁北极点不断运动呢?“我认为这些发现告诉我们,在木卫2的地表之下有一个液体水层。”空间科学家玛格丽特·基维尔森说。按照科学家的解释,如果在木卫2的地表之下有一个液体传导层——诸如盐水层——那将可以最为完满地解释磁性极点的不断变迁。基维尔森据此表示:“这些新发现对于木卫2上存在海洋的设想非常具有说服力。”
在伽利略号的任务结束后,美国太空总署的下一个探测器名为木星“冰月”轨道器,现在处于草拟阶段。
探察土星的空间探测器
土星是一颗类似木星的行星,主要成分也是氢和氦,由于氢、氦挥发得少,它基本上也保持了原始星云的化学组成。土星最引人注目的特征是它的环系。这些环从离土星约72000千米延伸到137000千米的距离,形成一个非常薄的盘,厚度只有几千米。有着漂亮光环的土星,是太阳系中最美丽的一颗行星。土星距离地球约12.7亿千米,非常遥远;它绕太阳的公转周期是29.46年,平均运行速度每秒9.64千米;它是太阳系中第二颗大行星,体积是地球的755倍,土星质量是地球的95倍,可平均密度只是地球的0.12倍,比木星还小。土星拥有10颗以上的卫星,因此自成一个系统,其中土卫6和地球一样也有空气,是太阳系唯一有大气的卫星,受到科学家的特别注目。该土卫6是在1665年由荷兰天文学家、物理学家惠更斯发现的。探测土星和土卫6,对了解和掌握太阳系的演变有重要意义。
美国发射的“先驱者11”号和“旅行者1”号、“旅行者2”号等探测飞船相继飞临土星系统进行就近考察,传来许多新信息。
1979年9月1日,“先驱者11”号从距土星云顶20200千米以内飞越,对土星拍照10天,测量了这个带光环的行星,发现了2个新的外环和直径约400千米的土星的第11颗卫星,该卫星靠近土星环的外缘。这次探测还证实土星有磁场、磁层和辐射带。
1980年11月13日凌晨,“旅行者1”号探测飞船在距土星云顶124237千米处掠过土星,飞船摄影系统从1980年8月开机,到1980年12月19日关机,共向地球发回18000张关于土星及其光环和卫星的彩色照片以及各种数据。从这些照片和数据中,科学家们了解到土星绚丽多彩的光环比以前认为的更复杂,它大大超过人们原先看到的6条,而有成百上千条环,形成一个光环群。这样密集繁多的光环,大小不等,形状不一,互不连接,形成一组环形彩带。在这些光环下面,还发现2条狭窄的短环,像发辫似地编结在一起,一股套一股,可能是由于电场或磁场对光环作用的结果。
1981年8月25日,“旅行者2”号从土星最近点飞过,天文学家从它发回的照片中发现,土星光环一环套一环,犹如唱片中的纹道。
根据探测材料,科学家认为土星的光环是由无数大小不等的砾石微粒组成的。这些砾石微粒直径从几厘米到大约9米之间,以很高速度绕土星运转,这一奇特现象究竟如何形成还是一个谜,但是可以认为各环可能是在不同时期形成的。
在发回的照片上,还发现了土星上的斑点、晕圈、旋涡,并随风移动。土星表面新发现一个橘红色的卵形区,其宽度和地球直径差不多。科学家认为可能是一次巨大的飓风造成的。土星上最大风速出现的区域是在环绕着它的光环彩带中心,而彩带边缘几乎无风。
“旅行者”号探测飞船还发现6个新的土星卫星,有一些是以前从未发现的,另一些虽曾报道过,但没有证实。特写观测照片显示土星的一些较小卫星是由“干冰”组成;有些卫星上存在亿万年来陨星撞击坑汇成的斑点;有些卫星表面比较平坦,说明较年轻。
“旅行者1”号探测飞船曾在离土卫6约4000千米身旁飞越,因为它是被探测的重要目标。土卫6的直径不大于5120千米,并没有过去认为的直径5760千米那么大,因此不是太阳系最大卫星,但它是太阳系内唯一有大气的卫星,大气层厚达2700千米。大气层大部分是由氮气组成,而不像以前认为的那样是甲烷。氮约占98%,甲烷只占l%,其余还有少量乙烷、乙烯、乙炔和氢等。由于土卫6上温度很低,氮在低温下凝成液氮,因而在土卫6表面上有许多液氮湖。虽然土卫6上有孕育生命的氢氰酸有机分子,但由于温度在-190℃~-201℃,显然不可能形成有生命的东西。
靠近土卫6表面的大气压力比地球大气压力高50%,表面至少由280千米厚的浓雾遮盖着。土卫6每16天绕土星运行一圈。有人幻想,如果未来的宇宙旅行家有机会来到土卫6上,将会欣赏到独特的景观:土星经常出现在天空中,像月亮在地球上空那样,周期性地变换着它的容貌,从圆到缺,从新月到满月,再加上那细微的光环,更是多姿多态,无限风光。
根据探测资料,美国和法国科学家有一个重大发现,就是土卫6上有反温室效应。由土卫6高层大气中一层厚的有机烟雾造成反温室效应,使土卫6的表面温度降低8.9摄氏度。但是土卫6的温室效应使其表面温度增加21.1摄氏度。科学家认为,土卫6的温室效应和反温室效应是同地球比较的极好的模型,研究土卫6可能会帮助我们搞清地球变暖或变冷的问题。
为进一步探测土卫6,1988年11月25日,欧空局宣布将于1994年4月由美国宇航局发射一个探测器,并在2000年到达土星系统。这个探测器以“惠更斯”命名的着陆器进入土卫6大气后,速度减慢,然后打开降落伞,从距土卫6表面180千米处缓缓下降,在两三个小时内降到土卫6表面,其冲击力相当缓和,足以使它在失效前对土卫6表面样品进行分析。探测器本身绕土星飞行,充当无线电中继站,向地面转播由着陆器发来的土卫6样品分析数据。
知识点原始星云
星云是由星际空间的气体和尘埃结合成的云雾状天体。星云里的物质密度是很低的,若拿地球上的标准来衡量的话,有些地方是真空的。可是星云的体积十分庞大,常常方圆达几十光年。
德国哲学家康德和法国数学家拉普拉斯认为太阳系是由一个庞大的旋转着的原始星云形成的。原始星云在自身引力作用下不断收缩,星云体中的大部分物质聚集成质量很大的原始太阳。与此同时,环绕在原始太阳周围的稀疏物质微粒旋转的加快,便向原始太阳的赤道面集中,密度逐渐增大,在物质微粒间相互碰撞和吸引的作用下渐渐形成团块,大团块再吸引小团块就形成了行星。行星周围的物质按同样的过程形成了卫星。这就是康德—拉普拉斯星云说。
探测器揭示天王星的面貌
天王星,绕太阳公转周期84.01年,平均运行速度每秒6.8千米。它是太阳系内的第三颗大行星,体积是地球的52倍,质量是地球的14.5倍,平均密度小,是地球的0.28倍,从体积、质量和平均密度比较,它有点类似木星,因此把它归入类木行星。科学家们据此推测天王星也没有坚实的固体外壳,星体完全由气体组成,主要成分是氢和氮,还含少量的氨和甲烷。
天王星距地球约28亿千米,大约相当于地球到土星的距离的2倍多。因为它太遥远,人类对它知道得太少了。然而,它一系列奇怪的天文物理现象和固有的内部构造激起了科学家对它就近观察的强烈愿望。据目前观察,它的自转轴差不多躺在公转轨道平面内,所以当它的一个极几乎垂直地接受日光照射时,另一个极却落在漫长的黑夜里,只有在特定的一二十年时间内才能观察到它的赤道区和扁球形状。
目前从地面望远镜观察到天王星有9条淡淡的光环,并拥有5颗卫星。令人奇怪的是和其他行星卫星不一样,这些卫星有的左旋,有的右旋。据科学家们推测,天王星犹如当年逐渐冷却和凝聚过程中的地球,就近考察天王星会获得珍贵资料与信息,有利于探索太阳系的起源和进化。
1986年1月24日,风尘仆仆的“旅行者2”号探测飞船飞抵天王星近旁。飞船在距天王星中心107020千米处,以每小时67820千米的速度飞越,对天王星进行了一系列科学探测和拍摄照片,获得大量科学资料。
飞船科学探测确认,天王星被汪洋大海所覆盖,其深度达8000千米,海水温度高达几千摄氏度。由于洋面上压着沉重的大气,因此超高温的海水未能沸腾。反过来,又恰恰由于这种超高温,才阻止了高压把海水“压凝”。天王星有极其丰富的大气,据探测资料,其大气层厚达几千英里,大气的主要成分,确实是以前认为的那样是氢,其次是氦,占大气的10%~15%,其余为少量其他气体。在天王星大气的云层中发现有向外喷射的气流,这种气流有毒。大气中还有猛烈的风暴,风速每小时达1600千米。此外,还发现天王星的天空中有“电辉光”,这在“旅行者”探测木星和土星时就曾有所发现。科学家们认为,“电辉光”可能和氢的存在有关。探测确定天王星自转周期为16小时58分钟,正负18分钟,而不是原来地面观测确认的23小时。
天王星的温度变化与地球大不相同。在地球上温度高低与阳光的直射、斜射关系甚大,而在天王星则不然。阳光普照的南极反而比阴暗的北极温度要低。南极太阳照耀下高层大气温度为1800摄氏度,黑暗的北极高层大气温度竟达2400摄氏度。探测结果还表明,天王星是由彗星构成的,这点不同于其他的近邻土星和木星,后两颗星都是由旋转的星云组成的。这一认识也和原来对天王星的看法不同。据探测资料,天王星的大气在彗星中也同样存在。科学家们分析,目前远离太阳的彗星,原本在天王星和海王星轨道上绕太阳运行,由于在引力作用下飞离轨道,最后在遥远的地方形成云雾;而留在天王星、海王星轨道上的数百万个彗星相结合便形成了天王星和海王星。构成天王星的彗星本来是巨大的冰块,只是在行星形成时,由于受高压和冲击的强力作用产生了高温,于是巨大的冰球便成了高温的水球了。
“旅行者2”号探测还揭开了天王星的两个谜。第一个谜,天王星虽没有坚实的固体外壳,是厚密大气包围下的超高温水球,但它的内核是和地球差不多大小的熔化岩心,其构成和地球大不相同。地球是以铁石为主,故比重比天王星内核大得多。第二个谜,天王星也有磁场,不过强度较弱。过去认为天王星没有磁场,因而被认为是一个谜。天王星磁场扭曲而毫无规律,科学家认为,这可能是由巨大的海洋和岩心缓缓扰动而引起的。
探测天王星光环也有新发现,光环总数不是地面观测到的9个,而是20个左右。光环之间有环缝,环缝中有颗粒很小的填充物。从摄下的彩色照片看,天王星的光环颜色不尽一样,有红色的,也有蓝色的,但是整个来说,光环均较暗。
对天王星的卫星也有新发现,在原来已知的5颗卫星基础上又发现10颗卫星。不过它们都很小,直径在30~70千米之间。飞船对原来的5颗卫星进行了测定,天卫1、天卫2、天卫3、天卫4、天卫5的直径现测定分别为1180千米、1220千米、1620千米、1570千米和480千米。这些卫星中最令科学家惊讶的是天卫5。“旅行者”2号飞船在距天卫518000千米处飞过,共拍照片16秒。这些照片表明,天卫5不是标准的圆球星体,它的地形极其复杂,至少有10种不同地貌。它拥有高耸入云的山峰、幽深的峡谷、又长又深的裂缝、横亘的大山梁、令人生畏的悬崖、错落分布的环形山以及“流淌”着的冰川等。天卫5地形如此复杂丰富多彩,简直可以把它看成太阳系内卫星的总代表。望着天卫5的照片,科学家惊叹的是,这种千奇百怪的地形是怎样形成的呢?
探测飞船拜访海王星
海王星是在1846年发现的,它绕太阳公转一周需要164.79年,平均运行速度每秒5.45千米。自从发现它到现在,它才绕太阳运行一周呢!海王星也是一庞然大物,在太阳系内排在木星、土星、天王星之后居第四位,也是一颗类木行星。它的体积是地球的44倍,质量是地球的17倍,平均密度是地球的0.41倍,比其他类木行星大。海王星处在太阳系的边缘,离我们有45亿千米之遥,历来对它知之甚少,在地面上用望远镜观察它也不过是两个亮点。由于距离实在太远,用探测飞船对它进行探测也是一个棘手问题。
“旅行者2”号探测飞船在太空翱翔了12年,行程72亿千米,终于在1989年8月25日迫近了海王星,不负科学家们所望,实现了对海王星的近距离考察,向地面发回6000多张海王星及其卫星的照片,揭开了这颗神秘莫测的蓝色行星的面纱。飞船抵达海王星的最近距离只有4827千米。在考察相会期间,先后发现了海王星的6颗新卫星,加上早先在地球上通过计算发现的海卫1和海卫2,使海王星的卫星总数达到8颗。
探测飞船还发现海王星有5条光环,其中2条明亮、3条暗淡。
美国科学家认为,海王星光环是由彗星碎片构成:在海王星最外层的一条光环中,有6~8个冰体,其中最大的有10~20千米宽。海王星南极周围有两条宽约4345千米的巨型黑色风云带和一块面积有地球那样大的风暴形成的大黑斑,类似木星的大红斑。这块大黑斑沿自身的中心轴逆时针方向旋转,每转一周需10天。海王星周围有一个被辐射带包围着的磁场,而且大部分地方有像地球南北极光一样的极光。海王星磁极对海王星旋转轴倾斜50度。
海王星表面照片科学家们认为,这可以解释为什么极光在该行星的大部分地方出现。海王星的大气动荡不定,大气层中含有由冰冻的甲烷构成的白云和一股像地球那样大面积的气旋,跟在气旋后面的是时速为640千米的飓风式风暴。
地面人员在处理飞船发回的新数据时,还惊奇地发现,海王星上空有与地球大城市上空一样的烟雾。科学家认为这是太阳光照射海王星大气中含量高的甲烷形成的。这种光化烟雾在海王星同温层底部形成了一层150千米厚的冰层。
“旅行者2”号对海王星的卫星海卫1的探测确认,它是太阳系中最冷的一个天体,表面温度为零下240摄氏度,它沿海王星自转方向逆行。对它有趣的逆行,天文学家根据探测资料研究后认为,它曾是一颗绕太阳运行的彗星,在某个时候与海王星的一颗卫星碰撞后,进入绕海王星运行轨道。
科学家根据探测信息还发现海卫1上有3座冰火山,而且有的还在活动,曾喷出过冰冻的甲烷或其他冰类物质。有时它喷出的氮冰微粒高达32千米。这一发现使海卫1成为太阳系中存在活火山的第三个天体,其他两个是地球和木卫1。科学家认为,海卫1冰火山喷发是由海卫1内部升高的液氮压力引起的。探测还发现海卫1上到处有断层、山脊、低悬岩和各种冰结构,这表明某个时期海卫1上可能发生过地震。海卫1上空有一层稀薄的氮气组成的大气层,海卫1上可能存在液氮海洋和冰湖。所有这些证明,海卫1可能有过长达10亿年的活跃的地质活动期。飞船对海卫1的考察使科学家们兴奋不已,人们对海卫1的兴趣甚至超过了海王星本身。
知识点光化烟雾
光化烟雾又称“光化学污染”,是大气中因光化学反应而形成的有害混合烟雾。大气中的有机物和氮氧化物等污染物,在阳光作用下形成的一种有害混合烟雾。光化烟雾的形成过程十分复杂,无机和有机化合物都参加了反应,无机化合物为数不多,无机化合物的反应已经明确,有机化合物为数众多,反应相当复杂。
光化烟雾有特殊气味、刺激眼睛、伤害植物和使大气能见度降低。刺激眼睛是光化烟雾的明显征象,刺激的大小则反映光化烟雾的强弱。1944年美国洛杉矶首次发生光化烟雾,此后洛杉矶、东京、墨西哥城、兰州、上海及其他许多汽车多、污染重的城市,都曾出现过。
人类对太阳系其他成员的探测
水星,在太阳系八大行星中是离太阳最近的,也是最小的一颗行星,其半径为地球半径的0.38倍,质量是地球的0.05倍,比地球轻许多,然而密度是地球的0.99倍,只略小一些。
水星表面照片
在“水手10”号探测飞船1974年就近探测水星之前,地面观察者得出水星绕它的轴以88天为周期自转的结论,这个周期和它绕太阳的公转周期完全相等,因此水星总是以同一面向太阳,就好像月球朝向地球那样。后来证明这个说法是完全错了。现已弄清楚,水星自转周期和公转周期并不相同。自转周期为58.646天,为88天公转周期的2/3,因此水星不可能始终用同一面对着太阳。1973年11月3日,美国发射的“水手10”号探测飞船,在1974年3月29日于日心轨道上两次与水星相遇。飞船离水星表面最近只有320千米,向地球发回了6000多张照片,使人们第一次知道水星表面布满了环形山,就像火星和月球上的一样。水星上面残存着极稀薄的大气,终年是400摄氏度的高温,探测发现水星也有磁场。
除了大行星和它们的卫星外,还有几十亿颗较小的太阳系成员。即使其中最大的,质量也只有地球的万分之一。
过去科学家根据计算认为,在火星和木星之间还应有一颗行星存在。实际上并没有发现这颗行星,却发现了大量直径在0.1~500千米范围内的小行星带,已算出了将近2000颗小行星的轨道,4颗最亮的小行星谷神星、智神星、灶神星和婚神星的直径已经测定,分别大约为1070千米、590千米、550千米和240千米。半径大于0.1千米的所有小行星的总质量约小于地球质量的千分之一。科学家不可能用探测飞船对小行星进行专门探测,但是一些探测飞船顺路和小行星相遇时,对它们中的一些也进行了探测,发现有一些小行星具有极丰富的矿藏,有的人提出要对小行星进行矿产开采,这是将来很可能要做的事情。
知识点从“九大行星”到“八大行星”
历史上曾流行“九大行星”的说法,即水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星,现在为什么又成了“八大行星”了呢?
原来,在2006年8月24日于布拉格举行的第26界国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系9九大行星中被除名。所以现在太阳系只有8颗行星。也就是说,从2006年8月24日11时起,太阳系只有8颗大行星,即:水星、金星、地球、火星、木星、土星、天王星和海王星。
人类对哈雷彗星的探测
和小行星一样,彗星也是太阳系的成员。除了离太阳很远以外,彗星的外表不像小行星。它的形状生得特异,头上尖尖,尾部散开,很像一把扫帚,所以民间称其为“扫帚星”。实际上,彗星分为彗核、彗发和彗尾三个部分。彗核由比较密集的固体质点组成,周围云雾状的光辉是彗发。彗核和彗发合称彗头,后面长长的尾巴叫彗尾。
太阳系中有很多彗星,其中哈雷彗星最为著名,它的周期是76年。它的椭圆轨道非常非常扁,太阳处在这个极扁椭圆轨道一头的焦点上。每当彗星接近太阳时,它迅速增强亮度;在远离太阳而去的大部分时间里,人们是看不到它的。哈雷彗星第一次是在1910年通过太阳时被观测到的,因此1986年它再次接近太阳时,各国科学家纷纷出动,根据各自的设备条件,组织力量抓住这个机会进行观测。
哈雷彗星前苏联发射的“韦加1”号和“韦加2”号,西欧发射的“乔托”、日本发射的“彗星”号及“先驱”号等五艘探测飞船从不同方面对哈雷彗星进行了就近探测。1986年10月,世界各国500多名专家讨论了收集到的科学证据的重要意义。现在这颗著名彗星的彗核形状、结构,彗星与太阳风之间的相互作用等问题初步揭晓,深入的信息资料研究还要进行若干年。
“韦加1”号、“韦加2”号在完成了探测金星计划之后,于1986年3月6日和3月9日分别进入了哈雷彗星包层,并且在距彗核8900千米和8200千米处飞越彗尾,第一次获得了彗核的大幅图像。探测器测量了彗星的温度和某些物理化学参数,分析彗星气体尘埃的化学组成,并且研究了电磁场和物理过程。“韦加1”号、“韦加2”号向地面共发回1200张不同光谱段的彗星照片,使得前苏联科学家作出如下结论:彗核是一个花生形状的均匀天体,其中一个直径约14千米,另一个直径约7千米。哈雷彗星的彗核表面极其黑,太阳照射的反射系数只有4%。彗星照片非常清晰,表明是由冰雪和尘埃粒子组成。虽然彗核对太阳光的反射极微弱,但当它接近太阳时,其中的冰升华为水蒸气,与尘埃一起形成彗发,而充满水蒸气的彗发在太阳光的照耀下能很好地反射阳光,因此人们从地面观察到彗星很明亮。
彗核的温度原先认为大约是-50℃,但实际上经测量要比这高出100℃。韦加还首先发现彗核中存在着二氧化碳,并找到了简单的有机分子,使科学家增强了从彗核中寻找生命起源的信心。
由于前苏联提供“韦加1”号、“韦加2”号弹道数据和这两个探测器获得的哈雷彗星准确运行轨道信息的引导,西欧较晚些时候发射的“乔托”探测器得以修正自己的轨迹,最终在1986年3月14日距彗核520~550千米的更近处飞越并摄取了近距离彗核图像。
“乔托”探测器向地面共传回1480张哈雷彗核照片,由于拍摄距离比“韦加”号探测器的距离近,照片更详细反映了彗核的面貌:彗核的形状凹凸不平,上面有两条从彗核表面的裂缝和奇特的喷嘴里喷射气体和尘埃的大喷气流,其喷射速度迅猛,而且是从彗核向太阳的一面喷出。“乔托”测得的彗核大小长15千米,宽8千米,应该认为比“韦加”所测彗核大小的数据更准确些。从“乔托”的照片上看,哈雷彗核上还有一座小山和一些陨石坑,整个彗核像烧焦的土豆。
“乔托”号探测器在距彗核700万千米以外的太空中检测出尘埃粒子,表明哈雷彗星尘埃粒子扩展的范围十分广大。“乔托”还分析了彗核附近的气体质量,检测出十几种分子,其中包括水分子。
日本发射的“彗星”号探测器观测了哈雷彗星彗发周围直径达1000万千米以上的氢冕。彗发中的氢原子散射太阳光中的紫外线而发亮,这就是所谓的氢冕或叫氢云。氢冕是不可能用可见光观测的,但可用紫外线观测。“彗星”号探测器上的紫外照相机从距彗核12000万千米的地方,拍得氢冕照片。该探测器还观测了太阳放出的高速粒子流,即太阳风。彗发的气体由于紫外线的照射而变化,形成离子和电子。这些离子和电子沿太阳风运动的磁力线流去,形成离子彗尾。离子彗尾随着太阳风的变化而时时刻刻改变着形状。“彗星”号探测器检测出太阳风中的离子,并在距离彗核15万千米的地方检测出彗发中的离子,调查二者之间的相互作用。
科学家们确认,太阳风离子受到哈雷彗星的影响。太阳风离子在不受哈雷彗星影响时秒速450千米。科学家了解到,哈雷彗星接受太阳热量最高时(1986年3月1日前后),每秒钟蒸发约16吨水分,比1985年11月前后增加约100倍。哈雷彗星每接近太阳一次,便蒸发掉2厘米厚的尘埃物质,因此哈雷彗星的寿命是有限的,根据科学家估计,它还可存在10000年左右。
这次对哈雷彗星的全面探测,是国际科学界的大事。收集到的信息和数据,对彗星物质的综合研究具有根本意义,因为科学家们认为,在大部分时间里彗星不受太阳影响,所以它们能以原始形态维持其物质。
美国没有发射探测器对哈雷彗星进行考察,但人类对彗星的首次考察是由美国进行的。1985年9月11日,美国太空船国际彗星探险者在距地球7000万千米处与贾科比尼·津纳彗星相会,并在极高的温度下穿过彗尾而未受到任何损害。它是在距彗核7884千米处穿过彗尾的,历时15分钟。测得彗尾宽度在14500~16000千米,而不是科学家原来计算的4800千米,这颗彗星的等离子彗尾可能比原来估计的大5~6倍,而彗星的磁场显然比地球小得多。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源