必知的导弹火炮-导弹百科
首页 上一章 目录 下一章 书架
    会飞的“活炮弹”

    导弹究竟是一种什么样的东西呢?它有哪些特点?它与炮弹、飞机、火箭究竟有什么区别和联系呢?

    让我们从第二次世界大战末期日本空军中的一种自杀飞机说起吧。

    在第二次世界大战末期,日本航空兵中出现了一支“神风特攻队”。在狂热的军国主义煽动下,成为神风特攻队员的日本青年军人,驾驶着装满炸药或鱼雷的飞机,去撞击美国军舰,与美国军舰同归于尽。这种自杀飞机使美国海军吃了很大的苦头。因为自杀飞机实际上是一颗会飞的“炸弹”或“鱼雷”,它由人驾驶,发现了要轰炸的目标,便会不顾生命危险连机带人一起冲向目标;像一颗会飞的活炮弹,自然比普通的炸弹、炮弹、鱼雷准确多了。

    导弹也就是一种与此十分相似的“活炮弹”,它自己能飞,自己能找寻目标,找到目标以后还能盯住目标去攻击。不同的是,导弹上没有同归于尽的“神风特攻队员”。

    导弹与炮弹毕竟是两种不同的“弹”。

    第一,导弹是自己带着发动机向前飞行的,而炮弹却要靠大炮发射。炮弹一出炮口,就像我们扔出去的一块石头,靠着火药在一瞬间把它推射出去的那股冲劲飞行。而导弹自身的发动机却不仅使导弹迅速地飞起来,并且还在飞行过程中一直产生出推动的力量。只有当发动机停止工作以后,导弹才和普通炮弹一样靠惯性飞行。我们只要想一想春节时燃放的“二踢脚”与射向天空的“起花”有什么不同,就可以明白炮弹和导弹在这一点上的区别了。因此,导弹飞行的路线可以分成两段。前一段叫主动段,这时导弹是靠发动机的推力前进的,吼声震天;后一段叫被动段,这时发动机已经不工作,没有推力了,导弹靠着惯性飞行,成了个悄然疾行的偷袭者。

    第二,导弹和炮弹在发射后虽然都是按照一定的飞行路线(也叫作弹道)飞行的,但是,炮弹的弹道是抛物线形的,炮弹一出炮口,它的弹道就不能再按炮手的意志改变,即使眼看炮弹打偏了,也没有办法纠正;而许多导弹的弹道,却是预先计算、制定好的,它在空中的飞行路线可以根据地形地物的变化、地球引力的不同等因素,上下起伏或左右曲折地变化,发现偏离预定弹道或预定攻击目标时还可以加以修正。这套自动控制设备有的是全部装在导弹上的,有的则是一部分装在导弹上,一部分装在地面、军舰或飞机上的。不过,第二次世界大战末期,德国V—1、V—2导弹上的自动控制设备还很不完善。因此,当时的英国飞行员创造了一种用飞机击落导弹的战术:驾驶歼击机从V—1导弹旁边飞过,用飞机带动的气流猛吹导弹,使其改变航向,或者使其坠毁。

    第三,导弹的构造也与炮弹大不相同。有的导弹和一般飞机一样,有弹翼,有尾翼,用它们来产生升力,操纵导弹飞行;有的导弹虽然没有翅翼,但是它的发动机喷口却是可以摆动的,这样就可改变推力的方向:向左推,它就向右去;向右推,它则向左去。这很像一个喷火喷气的舵。而炮弹是没有这些性能的,更没有发动机和自动控制设备了。

    另外,导弹与炮弹的射程也不同。导弹的射程比炮弹远得多。有的导弹能冲出大气层,作洲际飞行。就是最初的V—1和V—2导弹,也已经显示了这方面的绝对优势。德国军队在向英国初次发射V—1导弹前,曾经用超远程炮队对英国沿海城市实施炮轰,可只有33发炮弹击中了沿海目标,其余的都落入了英吉利海峡滚滚浪涛之中。V—1导弹就不同了,在它发射的头一月里,德国就取得了明显的战果,大约有60~65%(有时是80%)的V—1导弹击中了大不列颠海岛上的预定目标。

    与炮弹相比,导弹——这种自己会飞、会寻找目标的“活”炸弹的威力和优越性是不言而喻的。

    神奇的“飞人”

    导弹一般由战斗部、控制系统、燃料舱、发动机等部分组成,有的导弹还有弹翼和尾翼。总的看,导弹与人的身体结构差不多,或者有人干脆叫它为“飞人”。

    发动机,是导弹的心脏,采用科学术语,又叫导弹的动力系统。这是说,它像人的心脏一样能为导弹的飞行提供动力。

    导弹最常用的发动机,是火箭发动机,但也有用其他类型发动机的。导弹的燃料舱中装着燃料——煤油、酒精或液态氢;还带有帮助燃烧的氧化剂——液态氧或其他固体氧化剂。这样,装有火箭发动机的导弹既能在大气层内飞行,也可以在没有空气的宇宙空间飞行,燃料燃烧所需要的氧气都由氧化剂提供。燃料和氧化剂合在一起,就是火箭发动机的推进剂。推进剂燃烧后,产生出高温的气体,经喷管高速排出,以很强的反作用力推动着导弹飞行,速度可以达到音速的几倍,甚至十几倍。

    火箭发动机分为液体燃料发动机和固体燃料发动机两种。

    液体燃料发动机使用的是液体燃料(煤油、酒精或液氢等)和液体氧化剂(如液氧)。由于让液体燃料和液体氧化剂以最大的速度和适当的比例进入发动机燃料室,是可以像喷水龙头那样加以调节的,所以发动机的推力大小和工作时间的长短也可以进行控制,还可以使用高能量的推进剂,使导弹的推力增大,射程增远。所以早期的导弹和目前的巨型火箭运载器,大都使用这种发动机。

    使用固体燃料的火箭发动机,是用含有氧化剂和燃料剂成分的固体燃料作为推进剂的。它的工作原理和结构十分简单,只由燃烧室和喷管两部分组成。燃烧室装有供直接燃烧用的固体推进剂。推进剂燃烧后产生的大量火药气体,则从喷管中喷出,产生推力。

    如果说发动机是导弹的心脏,那么,导弹中的仪器舱——控制系统,就该是导弹的“大脑”和“中枢神经”了。导弹是一种“服从命令听指挥”的“炮弹”,它所以能打得准,按照规定的路线飞向目标,是由于它有制导控制系统。制导控制系统控制导弹飞行的原理,我们可以打一个比方来说明。

    有三支青少年野营小队同时进行“奔向目标”的军事游戏。野营指挥部交给第一支野营小队一份地图,上面不仅标有要达到目的地的方位,而且还有具体的行进路线,这支小队的任务就是按照地图上的路线,迅速赶到目的地,不要偏离;指挥部交给第二支野营小队的,是一架微型无线电通话机,小队在行进时随时与指挥部联系,根据下达的命令,“向左走”或者“向右转”,从而赶到预定的地点;第三支野营小队拿到的是一台小型无线电测向仪,他们要测出设在目的地的一架电台不断的无线电波,确定目标的方位,选择自己最佳的行进路线,奔向目的地。

    导弹的制导控制道理跟这个军事游戏很相似。野营指挥部给第一支小队一份地图并规定路线,让他们自己去按“图”行事,这种方式在导弹制导控制上叫“自主式制导”;野营指挥部在第二支小队的行进途中不断给以指示,从而把小队引导向目的地的方式,在导弹的制导控制中,叫做“指挥式”制导;野营指挥部让第三支小队根据设在目的地的电台发出的信号,自动寻找目标的方式,在导弹制导控制中叫做“寻的式制导”。

    当然,实际情况要比这复杂得多。导弹在一瞬间能飞行几十米甚至几千米,这是野营小队的行军速度无法比拟的。在这样高速的情况下进行制导控制,必须十分准确;指令的形成和导弹对于指令的响应,需要在极短的时间里完成,而且要可靠无误。

    怎样做到这点呢?

    体操运动员在吊环、跳马、平衡木、高低杠和绿茵毯上做各种滚翻腾跃动作时,心中是很清楚自己在空中所处的位置的,这样在动作结束落地时,才能保证脚先着地,而不是脑袋朝下“倒栽葱”。导弹要击中目标,首先也要清楚在空中的“位置”。导弹上的陀螺仪和加速度表,就是帮助导弹知道自己在空中所处的“位置”的仪表。我们知道,炮弹出膛后是靠绕轴心的飞速旋转来保持飞行稳定的。导弹却不允许这样“颠三倒四”地滚转。于是,就凭借陀螺仪来测定导弹在空中的滚转情况和是否偏离预定飞行航线,随之把这些变化情况转变成电信号,送到计算装置(或计算机)中,经过计算变成操纵信号,用来操纵保持稳定姿态。加速度表可以测出导弹的运动速度和位置变化。这两种仪表,是导弹制造技术中最核心的部分。它们与有关的电子线路、计算装置和执行“指令”装置,共同组成了保持姿态稳定的机构,导弹专家们把这叫做“导弹的稳定系统”。

    导弹在飞行时如能保持稳定姿态,那就有了准确奔向目标的基本条件。这时,就可以采用前面提到的三种制导方式,引导导弹向前飞行了。

    “自主式制导”是在导弹发射之前,将攻击的目标或导弹飞行路线,变成一组数据或计算公式,装入导弹内部仪器中,也就是事先交给导弹一张“图”,让导弹自己来按“图”飞行。这种制导不需要任何弹外设备配合,不用同外界做任何信息交换,所以抗干扰能力很强。许多洲际导弹都采用这种自主式制导。

    “指挥式制导”是依靠设在地面、军舰或飞机上的指挥站用雷达或光学设备来测定目标和导弹的相对位置,不断向导弹发出指令,指挥控制导弹飞向目标。它的优点是作用距离远,飞行路线灵活多变。地对空导弹适宜采用这种制导方式。但是,它测定目标、跟踪导弹、发出指令大都离不开无线电波,因此容易受到干扰。

    “寻的式制导”采用了仿生原理。我们知道,蝙蝠是个“瞎子”,但它能灵活飞行并捕食飞虫,是靠它自己发出的特殊声波从物体(如飞虫)上反射回来,耳朵听到后作出判断,决定自己该怎么飞,怎么“捉”。我们还知道,蚊子能叮咬人和家畜,是它觉察出周围微小的温度变化和气味变化,寻“热”寻“味”,飞向它袭击的目标。采用“寻的式制导”的导弹,与蝙蝠、蚊子飞捕目标的情况差不多。“的”就是“靶”的意思,也就是导弹要去打击的目标。在导弹上装一部小型雷达,主动向目标发出电波,靠接收反射回来的电波寻“波”追击,这种方式叫“主动式寻的制导”。它往往在作战距离较短,打击孤立目标时使用。飞行距离一长,目标一多,它就会感到千头万绪不知所向。

    像蚊子那样,追寻着被打击的目标所发出的热或声音或电波信号,向目标飞行的制导方式,叫“被动式寻的制导”。这种导弹上只要装上信号接收机就够了。与“主动式寻的制导”导弹相比,那上面的设备要轻巧简单得多。它的缺点是容易受假信号的欺骗。

    还有一种介于主动与被动式寻的制导之间的“半主动式寻的制导”。它是由设在地面、军舰或飞机上的指挥站,向被攻击的目标发射无线电波、激光、红外线或音响等,这样就能使装着接收机的导弹靠接收目标反射回来的辐射能追踪目标了。这种制导,常被地对空和空对空导弹所采用。

    导弹靠有力的心脏——火箭发动机而飞得快、飞得远;靠灵敏的大脑和反应迅速的中枢神经——制导指挥系统以稳定、准确地飞向目标。这一切都是为了攻击敌方目标,把它摧毁。当然,导弹还应该有一个大炸药包。导弹专家把这个部分叫做导弹的“战斗部”,意思是:这是用于作战的专门部位。

    人们可能会以为这个部分比较简单,只要装上炸药或核弹就行了。其实,这也是一个既重要又复杂的系统。从结构上来说,它包括本体、引信、传爆器、安全执行机构等几个部分。

    导弹除了有以上内脏外,还有一副不平凡的外表,它们大都是锥形脑袋,圆柱形身体,有的大型导弹戴着红帽子,全身乳白色,直立时像一位披着银白色铠甲的武士。而有的导弹浑身却像花蛇一样,涂着斑斓的伪装色。

    与飞机相比,导弹的“翅膀”似乎已经“退化”了。长在导弹身体上的翅膀叫“弹翼”。但是,并不是所有的导弹都带有弹翼,即使有,也是又短又硬,形状各异。有三角形的,棱形的,箭头形的,后掠形的。它们不像飞机那样长在机身两边,而是呈“X”型分布在弹身的周围。它们是导弹产生升力和侧力的主要部件。

    在弹翼后面,还装置着几个小翅膀,那是舵面,它可以根据控制系统发出的信号转动,帮助导弹改变飞行航迹。

    导弹尾部的稳定翼和那上面的副翼,就像箭尾部的羽毛,能起稳定作用,可以使导弹在飞行中不随意旋转。

    会用地图的导弹

    1991年1月17日凌晨,海湾战争的第一天。美国的巡洋舰上发射了52枚“战斧”巡航导弹,击中了伊拉克首都巴格达和其他一些城市的重要军事目标。这52颗“战斧”导弹除有一颗因为故障没有发射出去,其余51枚完全击中了目标,误差不大于9米,命中率达到98%。此后,在海湾战争中又大量使用巡航导弹,它的准确性好,军方感到非常满意。从此以后,巡航导弹名声大振,特别是在海湾战争以后,很多国家纷纷购买这种导弹用来装备自己的军队。

    巡航导弹是一种飞航式导弹。导弹在空中飞行,按它的飞行弹道可以分成两大类;一类叫弹道导弹,一类叫飞航式导弹。飞航式导弹有翅膀,弹道导弹没有翅膀。弹道导弹在大气层内垂直起飞,当它冲出大气层后向目标水平飞行,快接近目标时,再入大气层,攻击目标。弹道导弹自己携带燃料和氧化剂,因为它大部时间脱离了大气层飞行,因此不需要弹翼。由于在大气层以外飞行,没有空气的阻力,所以它飞行速度很快,飞行的距离也很远,射程可以达到8000~13000千米。如果装上核弹头就成了洲际核导弹。

    飞航式导弹是在稠密的大气中飞行,因此它有弹翼和尾翼。巡航导弹是飞航式导弹的一种,实际上就是一架无人驾驶的小飞机。巡航导弹虽然类似小飞机,但是它的发射不像飞机那样在跑道上起飞。它本身有两个发动机,一个喷气发动机,是它的主发动机,另外还有一个火箭助推器。点燃助推火箭把它发射出去,助推火箭工作6~7秒种后,完成任务自动脱落,然后靠喷气发动机飞行并攻击目标。由于它的重量轻,可以在飞机上发射也可以在军舰上发射,还可以在陆地及潜艇里发射。舰艇上最多能带100颗,一般的飞机能带10~20颗,大型的飞机可以装80~90颗。潜艇可以携带10颗巡航导弹。巡航导弹机动灵活,射程达1300~2500千米。它可以超低空飞行,飞行高度,在平坦陆地为50米以下,山区或丘陵地为100米以下,在海面飞行为7~15米。由于飞行很低,雷达很难发现,所以它攻击目标的突然性很强。由于它的体积比较小,在雷达上的信号仅仅相当于一只海鸥大小,隐蔽性很好。由于制导系统先进,命中率很高,最好的命中精度可以达到10米左右。在海湾战争时,我们曾看过这样的镜头,后一枚巡航导弹准确地穿入前一枚导弹炸开的缺口内爆炸。

    巡航导弹命中率极高,它到底采用哪些绝招呢?关键在于它有三种制导方式综合使用。以美国“战斧”巡航导弹为例,导弹长65米,直径50厘米,飞行速度每小时800千米。它在飞行过程中采用惯性导航,惯性导航的含义是,事先给导弹计算机里输入导弹飞行的路线,飞行过程中根据它自己带的仪器不断测定位置,与已安排好的路线比较,如果发现偏离了预定路线,自己可以纠正偏差,使得它符合事先设置的路线。但是惯性制导也有缺陷,由于仪器也有误差,当飞的时间比较久,距离很长时,误差就会积累,越来越大。“战斧”巡航导弹在飞行3个小时后,可能出现5千米的偏差,这么大的偏差是不可能精确地命中目标的。可见,惯性导航只能给导弹一个大的方向。精确的导航还要靠第二种导航方式,叫做地形匹配制导,这种制导方式就是我们说的巡航导弹能够使用地图了。在巡航导弹发射以前,先给它装上一张地图。当然这种地图和我们平常用的地图不一样,不是线划地图,而是一种数字化地图,巡航导弹飞行一段距离后,对照地图,根据地图随时纠正自己的偏差。这样就很容易找到攻击目标。

    数字地图是什么样子的?从哪里来?我们平常用的地图上面有很多符号、数字和注记,用不同颜色表示行政区划,那叫地理图。作为导弹导航用还不行,导航必须用地形图,也就是有等高线的,能表示地形高低起伏的地图。但这种地图,巡航导弹仍无法识别,需要把它改造一番。首先,把整个地图划分成很多小方块,把每一个小方块内地形的平均高度用数字表示出来,一幅图上全变成了许多数字,输入到导弹的电脑里。导弹都是打别的国家的军事目标,别国地图那里来?买一本世界地图行不行?不行,公开出版的普通世界地图很概略,不够详尽。详细而精确的目标地区的地形图只能重新测量。公开地跑到别国测地图,那是侵犯国家主权,谁也不会允许。怎么去干这件事呢?只好靠侦察卫星了。卫星用摄影机拍照,再经过复杂的计算和处理,可以制出普通地形图,再经数字化变成导弹导航图。这种数字地图一般人反而看不懂。

    巡航导弹靠惯性导航,有了航行的大方向。走了一段距离要对照地图,导弹里有个测高仪,在飞行过程中,这个测高仪不断测高度,它一边测一边和地图比较,如果它测的数字和地图上的数字相同,就说明它的位置是准确的,如果测出来的数字和地图上表示的数字不一样,说明它的位置错了,赶紧纠正。这样就可以不断的纠正巡航导弹飞行的偏差。在整个航程中经过3~4次纠正,就能够很准确的飞到目标。这就叫地形匹配制导。接近目标以后,还要使用另一种制导方式,叫数字景像匹配制导,在攻击目标以前要拍出目标的照片,把照片数字化以后存在导弹的电脑里,当导弹接近目标区时,用摄像机也拍一张目标照片,和事先给它输入的照片相比较,如果完全相同,就说明目标找对了,它就很快冲向目标,把目标炸毁。如果它拍的照片和事先输入的照片不一样,还得另外寻找,一直找准目标,它才进行攻击。经过这三种导航方式,巡航导弹命中的准确率就大大地提高了。敌方目标的原始照片由谁来拍摄。还是要靠侦察卫星。可见,使用巡航导弹,事前要作大量细致的准备工作,不是随时想用就能用的。

    巡航导弹发展历史也很悠久,早在二战期间德国首先研制的V—1型导弹,当时的射程仅仅是240千米,从德国发射到英国。但是它命中误差达到近5000米,准确度很差。由于它飞的速度比较低,经常被飞机击落,所以没能起到很大的作用。二战以后各个国家进行了研究和改进,使得巡航导弹发展到今天这个样子。成为一种威力很大、灵活性很强,飞行距离很远的现代化导弹武器。尽管巡航导弹有很多优点,但是还有许多地方有待改进。目前它的飞行速度比较慢,很容易被战斗机或防空武器击落。在伊拉克曾经出现过利用步兵的轻武器击落巡航导弹的先例。另外,巡航导弹靠数字地图导航,当在比较平坦的地面或是海面上使用时,就会受到限制,因为平坦地方的地形特征不明显,数字地图上都是同样的数码,因此它就很难判断自己是否偏离了原来的路线。在这种地形条件下使用,巡航导弹的威力就很难发挥。80年代末由于导航卫星全球定位系统投入使用,巡航导弹开始装上定位接受机,用卫星来修正飞行弹道,命中误差会进一步减小。巡航导弹被认为是一种适合在“零死亡率”战争中使用的最理想的武器。顺便说一句,“零死亡率”战争,就是指己方战斗人员没有阵亡的战争。

    “响尾蛇”的来历

    这里所说的“响尾蛇”是美国一种赫赫有名的导弹。50年代初,美国空军开始装备“响尾蛇”空对空导弹。那之后,就像这导弹的名字一样,在世界上爆发的许多局部战争中,“响尾蛇”真正成了捕杀飞机的毒蛇。它战功卓著,又不断“脱壳”更新,至今已有十多种型号。由此形成了一个“响尾蛇”家族。

    为什么这种空对空导弹会用响尾蛇命名呢?这里还有一段故事:

    响尾蛇是一种毒性很强的蛇。它游动的时候,尾部的鳞片会因为摩擦而发出响声,“响尾”之名就是由此而来的。科学家们作了个有趣的实验,就是把响尾蛇头部的感觉器官全部“包”住,只留出眼与鼻孔之间的“颊窝”。这时,再把用黑纸包着的灯泡对着它,不通电时,响尾蛇一动不动;一通电,灯泡发热了,响尾蛇便马上惊觉,如果把灯泡向它靠近,它就会凶猛地向灯泡发起攻击。

    科学家们进而又把响尾蛇的颊窝神经分离出来,用气味、光照、振荡等各种办法刺激它,那神经全无反应,可是一旦把发热的东西或人的手凑上去时,连接着颊窝神经的仪表上立即会显示出生物电流。这一切说明响尾蛇的神经能感知温度变化,它的颊窝是一个热测量器。

    想不到生物学上的研究居然给导弹专家很大启发。他们根据响尾蛇用颊窝的红外敏感性探找攻击目标的原理,设计制造出了用红外制导的新式导弹。凑巧的是,正在这时,研制这种导弹的美国海军武器研究中心附近发现了响尾蛇。于是研究人员就把“响尾蛇”的名字送给了他们所研制的导弹。

    “响尾蛇”导弹问世之后,为了适应新的作战对象,虽然在技术上不断更新,但是万变不离其宗,多数“响尾蛇”仍然是采用红外制导来追逐目标的。只不过是随着技术的发展,它“盯咬”有热辐射目标的本领越来越高强了。

    当然,飞机被它“盯”上后,是决不甘心“坐而待毙”的。它们或者采用急速转弯,或对着太阳飞行来摆脱“响尾蛇”;或者放出红外诱饵来作“替死鬼”,使“响尾蛇”上当。

    有一种红外诱饵弹,是在一个直径50毫米的药筒中装上镁、聚四氟乙烯、硝化棉等燃烧物做成的。当飞机受到红外导弹的攻击时,诱饵弹就发射出去并燃烧起来,发出高热,引诱导弹去追踪它而使飞机脱险。

    还有一种复合诱饵弹,爆炸后,弹内装着的无数金属箔条会散开形成一片金属干扰云,由于箔条上还涂着燃烧剂,所以它又是一片燃烧的“火”云。金属箔片可以干扰雷达波,“火”云则可以把“响尾蛇”骗过来。

    飞机带上上述诱饵燃料,一旦被“响尾蛇”盯上,就喷撒诱饵燃料,形成燃烧区,以逃脱导弹的追踪。这真有点像黄鼠狼放屁,乌贼鱼喷墨水的逃命把戏。

    空对空导弹是从20世纪50年代开始研制的。现在,世界各国已制成的空对空导弹达三四十种,“响尾蛇”导弹是其中比较典型的一种。

    从空对空导弹的控制导引机构来看,目前采用的主要有两种类型:一种像“响尾蛇”导弹那样,利用对方飞机放出的红外线来追踪目标;另一种是利用对方飞机上的雷达对目标照射时所反射的雷达波来追击目标。

    由于现代科学技术的飞速发展,现代作战飞机上已普遍装备了能自动识别目标的电子光学系统,空对空导弹的控制导引机构的性能也大为提高。今后有可能用遥控无人驾驶飞机去进行空战。到那时,飞机和空对空导弹将会以更新的面貌出现。

    年轻的飞“将军”

    人们也许以为,地对空导弹的体积都比较大,其实不然。为了对付日益发展的超低空飞机的袭击,在地对空导弹中还有一位新秀——年轻的飞“将军”单兵防空导弹或叫肩射地对空导弹。

    这种地对空导弹的服役年龄,最早要从1959年美国研制“红眼睛”开始算起,那以后,前苏联也研制成功了类似的肩射导弹——SAM—7,并在越南战争和中东十月战争中大显神威。埃及和以色列双方在十月战争中都损失了近百架飞机,其中有许多是被肩射防空导弹击落的。

    肩射导弹一般是由导弹、发射筒、电池和发射机组成的。它的特点是轻巧,一般只有1~2米长,7~8厘米粗,10公斤左右重。把它和前面说到过的那些车载防空导弹相比就像一支细巧的铅笔了。由于它是由射手扛在肩上发射的,因此十分安全可靠。

    发射时,导弹以每秒50米的速度飞离发射筒,飞行数秒以后,发射发动机自行脱落,主发动机随即点火,燃烧5秒钟后,速度就达到了每秒540米,由此便进入了惯性飞行。

    肩射导弹的制导方式很多,有光学瞄准红外线制导,激光制导,还有无线电指令制导等。

    拿光学瞄准红外线制导来说,先是由射手用光学瞄准具瞄准目标,接着启动导弹的红外导引头,去捕捉目标的热辐射,譬如喷气式飞机尾部喷出的热气流。如果红外导引头捕住了目标的热辐射,就会咬住目标,发出一连串音响信号,告诉射手:“我捕住目标了!”这时射手就可扣发扳机,发射导弹。导弹发射出去后,就靠红外线导引自动飞向目标。射手完全可以不去管它,而再去作下一次发射,攻击另一个目标。

    肩射地对空导弹的种类也很多,除了“红眼睛”和SAM—7以外,美国还有用红外制导的“痛击”,英国有用光学跟踪和无线电指令制导的“吹管”,瑞典有用激光制导的RBS—7C……它们大都装备陆军,用于单兵对空作战。

    当然,任何事物都是有其利也有其弊。肩射地对空导弹也是如此,它的第一个缺点,是战斗部太小,杀伤力不大。在中东战争中,数百枚SAM—7才击落了几架飞机。这就需要改进,增加战斗部装药量,或者提高其爆炸威力。它的第二个缺点,是因为在现代战争中,飞机往往用喷撒点燃的燃料和抛射闪光弹的办法干扰导弹,所以肩射导弹的红外导引头常会受骗上当。怎样使它们闯过辨别真假目标这一关,也是一个需要攻克的难点。它的第三个缺点,是对付低空高速飞行的目标,本领还不够高强,反应还不够快。怎么提高它对低空高速目标的作战能力,也是导弹专家们在考虑的问题之一。

    反潜导弹

    反潜导弹是专门用于攻击潜艇的导弹。当导弹的战斗部为鱼雷时,又称火箭助飞鱼雷。有些国家在深水炸弹上安装遥控或寻的装置,称为制导深水炸弹,它与水面舰艇、潜艇或飞机上的指挥控制、探测跟踪、发射系统等组成反潜导弹武器系统。

    反潜导弹由弹体、战斗部、动力装置、制导装置、电源和减速伞等组成。弹体用于安装弹上设备。战斗部可以是声自导鱼雷或核深水炸弹,装在弹体前部或腹部内。动力装置一般装在弹体腹部或尾部,采用无线电指令或惯性制导。减速伞用于弹头减速入水。

    反潜导弹按发射方式分为水面舰艇、潜艇和飞机发射3类。

    从舰艇上发射反潜导弹,是利用舰载声纳所提供的目标信息进行瞄准发射的。

    潜艇在水下发射反潜导弹,是利用鱼雷管进行的。发射时,内装导弹的保护筒从鱼雷管中推出,靠浮力倾斜升出水面,到达水面后,导弹在筒内点火起飞,在制导装置控制下飞行到预定点,战斗部与弹体分离后入水击毁目标。

    从飞机上发射反潜导弹通常在空中进行。当飞机转向战斗方向,距目标30千米时投放导弹,导弹自由下落一段后空中点火,并接受载机发出的遥控信号,导弹到达攻击区域上空时战斗部减速入水,击毁目标。

    第二次世界大战后,美国开始发展反潜导弹,1961年装备了水面舰艇发射的“阿斯罗克”反潜导弹。1964年装备了潜艇发射的“萨布罗克”反潜导弹。前苏联自70年代起,相继装备了SS—N—4、SS—N—15、SS—N—16反潜导弹。其他国家也发展了反潜导弹,如法国的“马拉丰”、澳大利亚的“依卡拉”和日本的R—109等。

    反导弹导弹

    中国古代有则寓言:一个人卖矛又卖盾,他举起矛说:“这是天下最锋利的矛,任何盾都能刺穿。”一会儿,他又举起盾说:“这是天下最坚固的盾,任何矛都不可能刺穿它。”旁边有人问道:“如果用你的矛刺你的盾,结果如何呢?”这个左右为难,无法回答。这就是“自相矛盾”。

    同样,大家可能要问:如果用导弹去打导弹,会怎么样呢?

    导弹碰到导弹,并不像两只牛相抵——一方把一方顶趴下,而是“轰”的一声同归于尽。那么,有没有这样“傻”的导弹呢?

    有一种专门拦截敌方来袭导弹的导弹,这就是反导弹导弹。还有像美国的“爱国者”多功能地空导弹系统,“短跑”低空拦截导弹系统和前苏联的ABM—1高空拦截导弹等。

    反导弹导弹从用途上可以分为战术拦截导弹和反弹道导弹。后者是用来拦截来袭的战略导弹的导弹。从发射方式上可以分为地空导弹、舰空导弹和空空导弹。目前地空导弹为最多。

    由于敌方来袭导弹破坏力较大,可能对己方城市、重要经济设施、军事基地、指挥机构和大型舰艇造成很大损害,特别是来袭的战略导弹装有核弹头,会造成灾难性后果。因此,要求拦截导弹要在敌方导弹来袭途中将其击毁。要做到这一点,导弹拦截武器系统要能及早发现敌方导弹,并在敌方导弹发射后5~30秒的时间内计算出敌方导弹各种飞行参数并以同样轨道发射反导弹导弹迎头痛击。这是难度很大的,要求包括预警飞机、侦察卫星、高速电子计算机和导弹控制系统形成的全球定位系统共同参与、紧密配合才能完成。

    浑身是胆的小个子“长剑”

    美国研制的“长剑”低空防空导弹敢于公开它的本领。“长剑”的弹长是224米,与我国著名篮球运动员穆铁柱差不多高,在地对空导弹中,是个“小个子”。它的动力装置是一台双推力的固体火箭发动机,能在瞬间产生很大的推力,把42公斤重的“长剑”以2倍音速送上3000米的天空。

    平时“长剑”装在发射车架上,发射车转塔上装有一种高效能的多普勒搜索雷达。当雷达侦察到目标时,敌我识别器就随即向空中目标发出一连串的询问信号,如果没有得到应有的回答,导弹车就会发出一种特殊的音响,召唤操纵手进入战斗状态。这时光学跟踪器和导弹发射架已经开始随着雷达搜索波自动向目标瞄准了。导弹操纵手只要将目标套进光学瞄准器中心,空中目标一进入导弹攻击范围,发射车上的电子计算机立即就能算出距离,并亮起信号灯通知操纵手,操纵手随即按下按钮,一枚“长剑”便随之呼啸升空了。这时,电视摄像管理中心马上跟踪“长剑”,一发现偏离航向就马上发出修正飞行误差的信号,通过计算机变成无线电密码指令,传给导弹,直到“目”送“长剑”把目标击毁为止。

    在能见度很差的情况下,“长剑”发射时就改用雷达跟踪器来跟踪。雷达跟踪器能自动跟踪和锁住目标,指挥导弹把目标击毁。

    在现代战争中,作战飞机常采用超低空飞行以突破敌方防空网,然后迅速爬高,攻击目标后又以超低空飞行撤离战场。第三次中东战争时,以色列的战斗轰炸机作贴地超低空飞行,在实施电子干扰的情况下飞临机场上空,迅雷不及掩耳地摧毁了埃及25个飞机场和450架飞机,使得埃及空军几乎全军覆灭。

    为此,各国除了发展中高空地对空导弹外,都很重视发展像英国“长剑”一类的低空防空导弹。要求它的自动化程度高,反应快,制导系统抗干扰能力强。并能装在装甲车上,能越野行进,能迅速转移,并以一身“钢盔铁甲”,在敌机的炮火袭击中有较强的“生存能力”。

    “响尾蛇”地对空导弹,法国和西德联合研制的“罗兰特”导弹,前苏联的SAM—8、SAM—9等,就属于这类装甲车载低空防空导弹。

    小“飞鱼”击沉大军舰

    翻开世界地图,可以看到在大西洋南端有一个称作“马尔维纳斯”的群岛。1982年4~5月间,靠近该群岛的阿根廷和远隔万里的英国在这人烟稀少的海岛附近打了一场激烈的海战。

    在这次举世瞩目的战斗中,一枚小“飞鱼”导弹竟把英国现代化的大军舰“谢菲尔德号”击沉了,一时间成为轰动世界各国的重要新闻。

    这场海战是由马尔维纳斯群岛的归属权引起的。阿根廷政府认为这些岛屿是它的领土,派兵将英国驻军驱逐出岛;英国政府把这些岛屿叫“福克兰群岛”,认为是它的领土,赶紧派了近四十艘军舰组成的“特混舰队”,万里迢迢地赶来,想以武力争个高低。

    战斗一开始,英国潜艇用鱼雷将阿根廷的一艘军舰击沉,更加激起阿根廷人的愤怒。就在英军欣喜若狂地庆祝胜利的时候,阿根廷的三架“超级军旗”式战斗轰炸机,携带着专门打军舰的“飞鱼”式空对舰导弹,从基地起飞了。

    到达预定位置后,飞在前面的一架飞机,突然向上飞,将侦察到的英舰位置用无线电通话机告诉给后面的两架飞机。与此同时,英舰上的雷达屏上也出现了几个亮点,但茫茫大海上很难辨认出这亮点究竟是什么目标。就在英舰还摸不清头脑的时候,阿根廷飞机向英舰发射了两枚“飞鱼”式导弹。

    灵巧的“飞鱼”导弹像离弦的箭,以每小时1000公里的高速向前飞去。为了躲避英国舰队的雷达,它几乎是贴着海面飘飞,离水面仅2米高。

    当导弹快接近英舰时,装在导弹上的雷达便开始搜索目标,并按照英舰反射回来的无线电波跟踪追击。英国军舰的舰长突然发现导弹飞来,惊慌失措地大喊:“隐蔽!”就在这一刹那,一枚“飞鱼”导弹在英舰吃水线上部15米处斜开了一个大洞,钻了进去。而另一枚导弹碰上对方施放的用铝箔制作的能干扰无线电波的铝箔云,未能击中目标。

    钻进舰内的导弹,像一条飞鱼似地在军舰里面横冲直撞。它先穿过正在做午饭的厨房,又冲击舰上的控制室,最后在机舰上面猛烈地爆炸了。倾刻间,浓烟滚滚,整个军舰变成一片火海。虽经水兵们全力扑救,这艘遭受严重毁坏的现代化大军舰还是沉入了海底。

    “飞鱼”式导弹是法国在70年代初期制成的一种空对舰导弹,现在它已成为对舰艇作战的重要武器之一。

    这类空对舰导弹之所以敢和大军舰较量,而且在实战中打出了威风,主要是因为它们具有克敌制胜的许多特点:一是突破防御的能力强。它们的飞行高度一般都比较低,最高处也超不过50米。接近目标时,它们的飞行高度仅约5米。这样,敌舰上的雷达难以发现。即使发现,也很难进行反击。二是它们的制导装置先进,打得准。这类导弹的制导方式较多,有的用雷达制导,例如“飞鱼”式导弹就是采用这种制导方式。有的导弹采用红外线制导,还有的采用电视制导和激光制导等等。这些制导方式的抗干扰能力较强,所以导弹击中目标的准确性就高。当然也有例外的情况,例如阿根廷飞机发射的两枚“飞鱼”式导弹,就有一枚因受电子干扰而未能击中目标。三是装载和发射操作方便,反应快。“飞鱼”式导弹从雷达发现目标到发射导弹,前后仅需一分钟左右,从而能很快捕捉目标,将目标击毁。

    “飞鱼”式导弹一举击沉大军舰之后,不少国家纷纷向法国提出定购这种导弹的要求,霎时间它身价倍增,由每枚二十万美元猛涨到一百多万美元。即使这样,人们认为还是合算的,因为一艘军舰的价格比它可就大多了。

    “飞鱼”式导弹并不大,身长约4米多,体重约600公斤,射程为50~70公里。它除了从飞机上发射外,还可以从舰上、陆地上以及潜艇上发射,但都是用来攻击军舰的。

    攻击雷达的反辐射导弹

    反辐射导弹又称反雷达导弹,它是利用敌方雷达辐射的电磁信号发现、跟踪以至最后摧毁雷达的导弹。在电子对抗中,反辐射导弹是对雷达威胁最大的一种武器。它能摧毁雷达和杀伤雷达操作人员,有效地抑制雷达设施的战斗使用,影响其对空情的掌握和对防空火力的有效控制。它可攻击的目标雷达包括远程警戒雷达、地空导弹的制导雷达、高炮的炮瞄雷达和歼击机的引导雷达等。

    常用的反辐射导弹属于战术空地导弹,但新的空对空型将出现,战略型也已登场。大多数反辐射导弹采用被动雷达寻的。近来,新型、先进的复合制导体制也相继出现。

    世界军事强国都十分重视反辐射导弹的发展。在此领域,美国和俄罗斯领先一步,英国和法国稍逊,德国和以色列正在研制反辐射导弹。

    反辐射导弹之所以得到迅猛发展,是因为它在电子对抗和突防袭击中具有许多优点。

    反辐射导弹是目前电子对抗中最重要的硬杀伤手段。电子干扰等电子战软杀伤手段只能使敌雷达系统暂时失去工作能力,干扰过后,雷达仍能正常工作。而反辐射导弹能摧毁雷达设备,使雷达难以在较短时间内修复,甚至不能修复再使用。反辐射导弹与电视制导、激光制导和红外成像制导空地导弹和炸弹相比,杀伤力更大,命中精度更高,堪称地面雷达的头号杀手。

    作用距离远,隐蔽性好。导弹采用被动雷达导引头接收目标雷达的信号,因此,信号强,作用距离远,可在敌发现之前或在敌防空火力范围之外实施攻击。由于导弹在飞行过程中不辐射电磁波,本身的雷达反射面又小,因此,隐蔽性好,不易被敌方发现和拦截。

    独立作战能力强。导弹发射后,不需要发射平台的配合,能自动寻找和攻击目标雷达。因此,当反辐射导弹压制地面防空系统时,发射平台就能把注意力完全集中在攻击目标上。

    新一代反辐射导弹采用无源宽频带高灵敏度导引头。一个导引头就能覆盖大多数现役雷达的频率。导引头灵敏度高,不仅能截获目标雷达天线主瓣,也能截获副瓣和背瓣,对各种体制雷达信号分选、处理能力强,能从密集的战场环境中鉴别差异很小的雷达信号特征。

    采用了复合制导技术。反辐射导弹除了装有被动雷达寻的装置以外,还装有惯导装置,并与机载无源定位系统相结合,其定位、制导精度高,圆概率误差在10米左右,甚至更小,而且具有抗雷达关机和抗干扰能力。有些导弹还具有巡航能力,一旦雷达关机,它们可由跟踪状态转为搜索状态,去截获新的目标,其作战使用更加灵活。

    适应性强。可配置在多种作战飞机上,全天候使用,导弹与载机的对接简便。

    60年代以来的多次战争,特别是海湾战争表明,大量使用精确制导武器是现代战争的特点之一。反辐射导弹作为精确制导武器庞大家族中的一员,在现代战争中的作用和地位是十分重要的。

    身手非凡的反卫星导弹

    1985年9月13日,美国的F—15战斗机在11582米的高空,在距目标卫星8000多千米的地方,发射了一枚反卫星导弹,成功地击毁了一颗废弃6年的美国卫星。这是一次奇迹般的胜利,标志着美国的反卫星武器开始走上实战应用阶段。

    反卫星导弹基本上是利用现成的导弹技术制造而成的一种小型导弹。导弹总重12吨,长54米,直径05米。导弹由3级组成,第一、二级为助推火箭,第三级为攻击卫星的战斗部——小型拦截弹。

    小型反卫星导弹装在战斗机的腹部,根据地面发出的指令,在15000~21000米高空发射。发射后,导弹引导装置引导导弹到达预定空城;弹上红外探测器开始搜索目标,一旦搜索到目标,即自动跟踪;当达到最大速度时,拦截弹与助推器分离,靠小发动机继续飞行,直到以每秒8~12千米的高速度与目标相撞,击毁目标。

    与前苏联的反卫星卫星相比,由飞机发射的反卫星导弹,具有体积小、重量轻、成本低、机动灵活、命中精度高等优点。但其拦截高度在500千米以下,低于前苏联的反卫星卫星(拦截高度可达2000千米)。

    这是美国用反卫星导弹进行的首次实弹试验。

    由于前苏联的截击卫星导弹接近了实战部署阶段,必然促使美国也加速了反卫星武器的研制工作。

    从1984年起,美国加紧反卫星武器的试验。如1984年1月21日,美国加利福尼亚州的爱德华兹空军基地,一架携带有反卫星导弹的F—15战斗机起飞。当飞机飞到范登堡空军基地附近的导弹试验场上空后,飞机将反卫星导弹发射到太空。这是美国从空中发卫星武器的第一次试验。

    这枚反卫星导弹长约51米,直径约03米,由两级固体火箭组成,头部装有五六十个小火箭,射程约1400公里。

    这种反卫星武器有什么独特之处呢?它从空中机动发射。F—15战斗机可以把反卫星导弹带到25000米的高空,选取有利时机或位置发射导弹,在有激光陀螺的惯性制导系统的控制下,导弹按照预先设计的线路飞向目标。这种导弹上装有探测敌方卫星的长波红外遥感器和8个瞄准望远镜,一旦发现敌方卫星,便自动进行跟踪,导弹的制导和自动搜寻的系统保证准确无误地击中目标卫星,将其摧毁。因此,这种导弹比从地面基地发射的反卫星武器更接近于太空轨道上的敌方卫星,并且具有较大的机动性。

    反卫星武器的研制,美国早在60年代就着手进行,由于经济危机及其他原因,被迫停了下来,但就反卫星武器的各个分系统,如跟踪、识别、接近、摧毁等所需的技术来说仍然在继续研究。

    从1972年起,美国加速了反卫星武器的研制,并在监视、攻击和摧毁敌方目标等方面作了试验。1977年1月,政府下令实行一项发展和部署美国反卫星武器系统的计划。同年9月美空军同达拉斯的沃特公司签订了金额5870万美元的合同来制造摧毁敌人卫星的武器,原定1979年之后搞出反卫星武器系统。

    五角大楼在反卫星武器方面进行全面努力。这种努力不仅是寻求摧毁敌人卫星的武器,它还包括防止本国卫星的地面站遭受攻击的计划,也包括改进跟踪敌方卫星和确定这些卫星使命的各种设施的计划。

    由于美国电子计算机技术先进,截击卫星接近目标时不是采用操作,而是采用碰撞的方法击毁敌方目标,这一颗截击卫星可以有效地打掉对方目标。

    拖着尾巴的反坦克导弹

    反坦克导弹是同敌人坦克进行战斗的最理想的武器。正因为如此,所以在许多国家的军队里都大规模地进行生产,并成千上万枚地制造这种武器。

    反坦克导弹的主要优点是,对机动与固定目标的命中精度高、破甲能力强、飞行距离远,可以远离阵地发射。根据时间不同,反坦克导弹可分为三代:

    第一代反坦克导弹,是指60年代之前服役的导弹。其代表型号有:法国的SS—10、SS—11、SS—12,前联邦德国的“眼镜蛇”,日本的“马特”,英国的“摆火”,前苏联的AT—1、AT—2、AT—3。

    从这一代导弹的发展来看,法国居领先地位,它研制的SS—12导弹(1962年装备)的各项指标在当时都属最好水平,该型导弹射程500~6000米,导弹飞行速度190米/秒,弹径210毫米,弹长1870毫米,翼展650毫米,弹重75千克。第一代反坦克导弹的研制成功,对坦克形成了较大威胁,也为后来的二三代导弹的发展奠定了基础。但第一代导弹大都采用手控有线制导,反坦克导弹射手易遭对方攻击,导弹飞行速度较低,机动能力也较差。

    第二代反坦克导弹,是70年代初至70年代末服役的导弹,其代表型号有:前苏联的AT—4、AT—5、AT—6,美国的“陶”、“龙”,法国的“哈喷”、“阿克拉”,前联邦德国的“毒蛇”,法德联合研制的“米兰”、“霍特”及日本的KAM—9等。

    第二代导弹中,各项指标最好的上“陶”式导弹,其次是“霍特”、“米兰”和“龙”式反坦克导弹。“陶”式导弹射程650~3750米,飞行速度为350米/秒,弹径152毫,弹长1178毫米,翼长340毫米。第二代导弹的突出特点是采用了管式发射,光学跟踪、红外半自动有线制导,飞行速度提高了1倍,可以车载和机载,命中概率已达80~90%,破甲厚度也有所提高。

    第三代反坦克导弹,是指80年代初以后服役的导弹和正处于研制阶段的导弹。这一代反坦克导弹性能明显提高。其代表型号有:美国的“陶2”、“陶3”、“狱火”、“坦克破坏者”、“斑塔姆”、“毕尔”RBS—56反坦克导弹以及先进的AAWS-M中型反坦克武器系统等。这一代反坦克导弹的特点是提高了机动能力,增大了射程,提高了飞行速度、命中精度和破甲厚度。

    除反坦克导弹外,其他反坦克制导武器也有很大发展。如美国研制的“小牛”导弹,射程达40千米,采用红外制导;用地地战术导弹或飞机发射的“挫败进攻者”敏感反坦克子母弹能携14~24个子弹头,射程150~200千米。

    现在,第四代反坦克导弹即将问世,它就是“发射后不用管”或“发射后忘记”的自动制导的新型导弹。人们相信,在未来的战争中,反坦克导弹将随着坦克的发展而出现更新的第五代、第六代……它们之间的竞争将会继续下去。

    美国“战斧”导弹

    这是美国研制的多用途先进的巡航导弹,也是目前世界上最早采用惯性导航、地形匹配和数字式景象匹配区域相关的复合制导导弹,至今已发展了18种不同型号。1976年开始研制,1982年装备海军,1983年装备陆军。这种导弹主要用于攻击陆上严密设防的高价值目标或海上水面舰艇和航空母舰编队。

    “战斧”巡航导弹是一种性能很先进的导弹,它采用了许多高新技术。例如,在制导系统中率先采用了地形匹配技术,即在飞行中段采用地形——等高线匹配制导,由雷达高度表在沿航路预定部位产生地形轮廓,将这些地形轮廓与制导计算机中的基准面进行对比,以确定是否需要进行飞行校正。通过几次修正,就可提高导弹的飞行精度。在末段寻的制导阶段,由数字式景象匹配系统产生自然地貌与人造地貌的数字式景象,并将其与计算机内存的景象进行对比。正由于这种地形匹配制导的精度高,所以“战斧”巡航导弹能“按图索骥”击中千里之外的目标。

    “战斧”导弹可以从陆上、海上及空中发射,有战略型和战术型两种,即对陆攻击型和对舰攻击型,既可携带常规弹头,又可携带核弹头。

    对舰攻击型导弹的外形尺寸与对陆攻击型“战斧”基本相同。该导弹带助推器长为624米,不带助推器为556米,翼展265米。发射质量1500千克。采用涡轮风扇发动机和一个固体火箭助推器。巡航速度为马赫数0,75~085,巡航高度中段为(15~60)米,末段为(5~10)米。携带高爆穿甲战斗部或常规子母战斗部,总重为454千克,最大射程为1300千米,海上巡航飞行高度(7~15)米,最大巡航速度为马赫数072。命中精度仅为30米。

    对陆攻击型战斗部质量为1225千克,携带核弹头的威力大约为20万吨TNT当量。最大射程为2500米,陆上飞行高度(50~510)米,巡航速度为马赫数072。导弹全长617米,机载型约56米,弹径0527米。

    在海湾战争和科索沃战争中,美国使用的“战斧”导弹主要是对陆攻击型巡航导弹。该导弹炸毁了伊拉克的国防部大楼。美国向伊拉克总共发射了数百枚“战斧”导弹,摧毁了大批坚固的点目标和一些面目标,为打败伊军起到了关键陛作用,“战斧”巡航导弹也因此名声大噪,从而也促使美国放弃了要用新的巡航导弹发展计划替代“战斧”导弹的设想。为进一步增大新一代导弹的攻击能力和突防能力,美军正在实施下一步改进计划,即将500枚反舰“战斧”导弹改进为具有更高电子对抗能力、掠海飞行能力、末段突防和目标杀伤能力的新型巡航导弹,而且具备对目标实施多次袭击的能力。

    美国“战斧”对陆核攻击导弹

    “战斧”对陆核攻击导弹是美国海军研制的多用途核攻击巡航导弹,代号为BGM-109A,是世界上最先进的小型化核弹头巡航导弹,主要用来装备攻击型核潜艇,以执行全球性战区核攻击任务,而目作为一种后备力量而在核战争后期攻击敌方的重要目标。

    对于潜射核导弹,为了保证核潜艇工作人员的安全,选择核弹头有其特殊的要求,因此,“战斧”对陆核攻击导弹的核战斗部成为当今世界最先进的小型化的核弹头之一。这种核攻击导弹于1972年开始研制,1976年首次试飞,1982年初具作战能力。

    该导弹弹长617米,弹径0;527米,翼展265米,发射质量1443吨,最大有效射程为2500千米,命中精度为30米,可靠性大于80%。巡航高度为(76~52米),最大巡航速度为马赫数072。主发动机为一台F107-WR-400型涡扇发动机,重653千克,最大推力267千牛,巡航推力1333千牛;助推器为固体火箭,重297千克,推力31千牛,工作时间(11~13)秒。

    该导弹制导系统采用麦道公司研制的以地形匹配修正的惯性导航系统,控制系统采用全数字化自动驾驶仪和AN-194型雷达高度表。由于利用地形匹配技术,能使导航位置误差下降为千分之几。当惯性导航系统的累计误差达120米时,便进行位置修正。战斗部全重1225千克,内装TNT当量可调的20万吨级的WS0-0型核弹头。导弹的发射指挥系统为MK17火控系统,采用在潜艇上水平发射的方式。MK17系统在20分钟内完成导弹发射前检查和制导设备的校准,并将射击诸元输入弹i计算机,导弹便自动完成发射前的准备工作。

    当导弹从保护箱中水平推出后,助推器点火,导弹从水平飞行转入爬升,(4~6)秒后以500的倾角冲出水面;助推器工作12秒后,燃料耗尽并与弹体分离,启动主发动机,开始控制导弹的飞行姿态和高度。当导弹爬升到最高点300米时,便转入巡航状态,保持巡航高度继续飞行。

    “战斧”对陆核攻击巡航导弹从发射到转入巡航状态大约需要60秒。进入陆地后,先用地形匹配系统作一次航向修正,以后每隔一段时间使修正一次。接近目标时,用高精度数字地图进行最后的修正,以精确保导弹的命中精度。

    早期的巡航导弹与短程空对地导弹是可以相互取代的,因此B52G型或H型轰炸机可以在内部发射舱装上8枚并在外部搭挂12枚。这种需求影响了它的弹身造型,而成为三角形并有可收缩的平衡翼、尾翼及引擎空气输入口。到了1976年决定将系统修改成接近AGM-109战斧(Tomahawk)空对地导弹的模样,但是关于导引系统部分则并未相同。1976年5月5日,AGM-86A型巡航导弹在白沙导弹测试场(WhiteSandsMissileRange)第一次试飞,最初五次试飞并不太顺利。因而决定予以改良,在1980年决定增长30%的弹身且增加燃料量,并命名为AGM-86B型巡航导弹。这二型在相同的弹头下增加了2倍射程,而其测试亦相当成功。最后的结果:军方在1980年订购了3418枚,稍后并增为3780枚。两种新的导弹现正在开发中:先进巡航导弹(AdvancedCruiseMissile,)与第二代短程攻击导弹(Short-RangeAttackMissile,SRAM)。这两型导弹都会比它们的前任来得好,特别是先进巡航导弹将结合匿踪的科技。

    巡航导弹部署在B-52G型、B-52H型与B-1轰炸机上。

    “北极星”A-1

    1960年7月18日,世界上第一艘携载16枚“北极星”A-1弹道导弹的美国海军“乔治·华盛顿”号核潜艇准备进行世界上第一次潜射导弹试验。7月20日12时39分,“北极星”A-1弹道导弹终于从“乔治·华盛顿”号核潜艇上成功地发射出去,导弹冲破海面,顺利升空。15时32分,第二枚导弹也试射成功,射程达1780千米。

    第一次水下导弹的发射成功,使潜艇真正具有了强大的生存能力和突防能力,特别是促进了战略导弹核潜艇的发展,为核武器储备和实施机动核打击奠定了基础。

    “北极星”A-1导弹是美国研制的第一代港地中程弹道导弹,代号为UGM-27A,1960年11月装备部队。曾装备5艘华盛顿级核潜艇,每艇16枚,1965年全部退役。每枚导弹单价75万美元。

    该导弹长869米,弹径137米,起飞重量129吨,起飞推力311千牛,投掷重量454千克,射程2200千米,命中精度为1850米。导弹采用两级固体火箭发动机,各有4个固定喷管,靠喷流致偏环来改变推力方向。

    美国“三叉戟”Ⅱ导弹

    “三叉戟”Ⅱ导弹是由美国洛克希德导弹与空间公司合作研制生产的第三代潜地弹道导弹。它由潜艇发射,最大射程11100千米,是目前世界上射程最远的潜地弹道导弹。

    美国海军从1971年起执行水下远程导弹研制计划,最初研制的“三叉戟”I导弹于1979年10月装备部队。1984年开始研制性能更好的“三叉戟”Ⅱ导弹,1987年1月在陆基平台上进行了首次飞行试验,到同年10月共进行5次飞行试验,均获得成功。1990年3月开始装备部署。到1994年底,美国海军已有7艘核潜艇装备了“三叉戟”Ⅱ导弹,共配备168枚导弹。到20世纪末,美国海军至少装备20艘“俄亥俄”级导弹核潜艇,每艘装24枚导弹。

    导弹全长139米,弹径208米,最大起飞质量372吨,投掷质量为2300千克。它具备攻击包括硬点目标在内的各种目标的能力,是用来摧毁敌方重要战略目标的海基威慑力量。每枚导弹可装(8~12)个MK4/W76子弹头,单个子弹头威力约为475万吨TNT当量,能摧毁前苏联最硬的地下发射井。

    该导弹动力装置为三级固体火箭发动机和一个末级助推控制系统。第一、二级在“三叉戟”I的基础上有较大的改进:第一级壳体材料改用石墨/环氧棚旨,助推剂改为聚乙二醇/硝化甘油;第三级发动机采用可延伸的碳/碳喷管出口锥,动力装置还包括一台第三级分离发动机。而第三级没用改动,仍沿用“三叉戟”I导弹的第三级发动机。

    制导与控制系统采用惯性制导,命中精度相当高,CEP为90米。它的惯性制导测量装置采用2个双轴动力调谐绕性陀螺、3个摆式积分陀螺加速表和1个新设计的星光监控器。美国海军计划到2002年建成一支由24艘装有“三叉戟”Ⅱ导弹的潜艇组成的海基威慑力量,在大西洋和太平洋执行战略巡航任务。该导弹精度高而有效载荷大,它攻击硬目标的效能要比“三叉戟”I导弹高三四倍。

    英国在20世纪60年代就同美国签订过有关协议,约定由美国向英国提供部分核潜艇和导弹。因此,英国也有“三叉戟”Ⅱ导弹,但其核弹头是英国自行研制的。根据美俄《第二阶段削减战略核武器条约》的规定,在条约生效后,“三叉戟”Ⅱ导弹所携带的子弹头数将由(8-12)枚减少到4个。

    俄罗斯“飞毛腿”B战术弹道导弹

    弹道导弹是当今世界上最受人们关注的武器之一。在目前世界各国装备的50多种不同类型的弹道导弹中,名声最大的恐怕要数俄罗斯的“飞毛腿”导弹了。这是因为“飞毛腿”导弹在导弹家庭中资历最老,而且也是目前世界上最普及的战术弹道导弹。在当前已装备弹道导弹的35个国家中,有21个国家装备了“飞毛腿”导弹,可见它普及之广了。

    “飞毛腿”导弹是在第二次世界大战结束后不久,由前苏联的科罗廖夫设计局利用所缴获的德国V-2导弹和俘虏的德国导弹科学家和工程师设计的。最初设计的是“飞毛腿”A型导弹,1955年装备部队,是世界上最早的战术弹道导弹。这种导弹为单级掖体导弹,使用煤油和硝酸作为液体推进剂,射程仅为180千米,命中精度为3千米,带一个当量为5万吨的,核弹头。

    1958年,前苏联将“飞毛腿”A型改进成代号为SS-N-1B的世界上第一个潜射弹道导弹,装在C级潜艇上。接着,前苏联于1962年在“飞毛腿”A型导弹的基础上研制成功“飞毛腿”B型导弹。从1965年起,该导弹出口到华沙条约多个成员国和多个中东国家。据估计,前苏联共生产了约7000枚“飞毛腿”B型导弹。

    后来,在“飞毛腿”B型导弹的基础上,前苏联和其他一些拥有该导弹的国家纷纷研制出该导弹的改进型,如前苏联研制的“飞毛腿”C型导弹和“飞毛腿”D型导弹,伊拉克研制成的“侯赛因”导弹和“阿巴斯”导弹,朝鲜于20世纪80年代末研制成功的“劳动”I型导弹等,使“飞毛腿”导弹及其改进型成为世界上拥有国家最多的弹道导弹。

    俄罗斯“白杨”-M导弹

    “白杨”-M导弹被西方称为SS-27导弹,是俄罗斯历史上第一种自行研制和生产的导弹系统,也是俄罗斯固体燃料弹道导弹进一步改进过程中的重大进步,“白杨”-M导弹可以认为是俄军工企业的新生儿。该导弹是一种中型单弹头陆基机动洲际弹道导弹,其制导控制系统是当今世界最先进的人工智能系统。它技术先进、可靠性高、飞行速度快、突防能力强,可令敌人防不胜防。该导弹装备了克服反导弹防御系统的最先进手段,即反拦截手段,专门对付美国正在斥巨资研制的国家导弹防御系统(NMDL因此,“白杨”-M导弹真正成了当今世界上第一个NMD的克星。

    该导弹是SS-25导弹的改进型。1994年12月20日,白杨”-M导弹进行了首次试射。1997年7月8日,在普列谢茨夫靶场“白杨”导弹进行了第4次试射。接着,于1998年12月9日在普列茨克发射场对“白杨”-M导弹进行了第6次发射试验,导弹按预定轨迹准确击中了靶场目标。这最后一次发射试验的目的在于对这种面向21世纪的最新型战略导弹的飞行技术参数做最后的鉴定。

    “白杨”-M导弹系统在研制、试验过程中,以及在其战术技术性能指标中都创造了多个“第一”,甚至在世界上也是首次。如第一次为高防护性的井基和机动陆基发射装置制造了标准化统一的导弹;首次使用了新型试验系统,借助它可检验导弹系统在地面和飞行状态各系统和组件的工作状态和可靠性,从而可大大缩小传统试验规模,减少费用,同时又不降低导弹系统研制和试验的安全性。

    “白杨”-M导弹之所以引起世界人的关注,主要是因为它是当今世界技术最先进的洲际弹道导弹。该导弹为单弹头,采用惯性加星光修正制导方式。该导弹弹长227米,弹径195米,导弹发射质量472吨;投掷质量1200千克,射程超过10500千米。单弹头当量约为55万吨级,命中精度为350米,反应时间为60秒。

    “白杨”-M导弹的最大特点是,在目前和今后相当长一段时间里反弹道导弹无法将其击落,其原因有以下几方面:

    (1)飞行速度加快。由于该导弹使用了3台功率强大的固体火箭发动机,其飞行速度比现有俄制导弹速度都快,大大缩短了导弹在轨迹主动段的飞行时间和高度,增大了穿透力;同时它还有数十台辅助发动机,加上操纵系统和设备使这种快速飞行的导弹很难被敌方辨别。

    (2)电磁隐蔽性好。“白杨”-M导弹几乎完全没有对电磁脉冲的敏感性,在该导弹试射过程中,尽管美国的侦察卫星极力进行跟踪,但导弹的信号还是躲过了美电子侦察系统的监视。

    (3)先进的隐身措施。据说,“白杨”-M导弹的前锥体部分可放置起欺骗作用的物体。当发射时,这些干扰物将使反导弹系统看到“数千枚弹头”,将使它难以从那些假弹头中区分出真弹头。俄罗斯计划在21世纪初的前10年内部署(300-350)枚“白杨”-M导弹系统,这些导弹有井下发射和公路机动发射两种型号。

    美国“侏儒”导弹

    “侏儒”导弹是美国新研制的小型固体洲际战略导弹,能在公路上机动,以提高导弹的射前生存能力,主要用来打击导弹地下井。该导弹也是目前世界上最早采用全程制导的洲际战略导弹。20世纪90年代,它与MX导弹、“民兵”Ⅲ导弹一起成为美国战略核威慑力量的重要组成部分。

    该导弹于1983年开始研制,同年美国空军成立“侏儒”导弹计划局。1986底首次飞行试验失败。1992年,第二次试验取得成功。由于受美俄《第二阶段削减战略武器条约》的影响,该型导弹并没有正式服役。

    谅导弹弹长1615米,弹径117米,起飞质量168吨,射程(10000~12000)千米,命中精度(146-182)米,弹头核当量500万吨。其动力装置为多级固体火箭发动机。第一级发动机由联合技术公司化学系统分公司研制,发动机长564米,直径1168米,重8165吨,采用先进的高能固体推进剂,用高强度石墨环氧树脂复合材料制造机壳;第二级发动机由空气喷气战略推进公司试制,采用碳/碳喷管,壳体用石墨纤维绕成,并于1985年2月试车,推力达18247千牛,工作时间417秒;第三级发动机由联合技术公司研制,长203米,直径117米,重154吨,采用可延伸喷管。

    制导系统采用全程制导方案,即主动段制导采用MX导弹制导系统的改进型,称为轻型高级惯性参考球制导系统;中段制导采用“三叉戟”I导弹的MK-5星光惯性制导系统,重约60千克;末段制导采用末端定位系统的末制导装置,能使弹头在目标区内机动,消除主动段和中段的制导误差,使导弹在9250千米的射程中命中精度达到30米。弹头采用MX导弹的MK21核弹头,重达(194~2064)千克,威力约为(30~50)万吨级。这种弹头能机动躲开反导弹攻击而确保精确命中目标。

    “侏儒”导弹与“和平卫士”导弹一样,也携带MK21/W87核弹头。该导弹还配备有能与发射车始终保持联络的指挥、控制、通信、计算机和情报系统,同时还能利用载于飞机上的发控中心作支援。

    美国目前正在研制重型的“侏儒”导弹,并在不影响导弹机动性的条件下,准备增大该导弹的战斗载荷和突防装置。

    俄罗斯首都反导弹防御系统

    俄罗斯在莫斯科防空区建造了目前世界上最大的反导弹防御系统,被西方称为“世界第八大奇迹”。

    这个反导弹防御系统的任务是发现并跟踪入侵的洲际弹道导弹和其他类似的目标,并指挥反导弹导弹对目标进行拦截,防止来袭目标的核战斗部命中目标。该反导弹防御系统设有多功能无线电雷达站,还有一个计算机控制中心和若干反导弹发射井(其中一种是用于发射在高空、甚至在太空中拦截目标的远程导弹;另一种是可发射高速中程导弹的发射井)。系统在核爆炸的情况下仍能出色工作,它能抵御核辐射和爆炸性杀伤。

    庞大的莫斯科反导弹防御系统有数千个房间,电缆总长几万千米,自来水管道上千千米。管道上面有数万个水阀——它们为各种设备的正常工作输送质量、成分和温度各不相同的水。防御系统有8个发射场,装备32部ABM-1B“橡皮套鞋”反导弹系统。另外,还配备有SH-01高空拦截导弹(拦截距离为700千米左右),以及用于高空远程拦截和大气层拦截的SH-08、SH-04和SH-11拦截导弹等。

    该防御系统从发现目标到摧毁敌导弹战斗部的整个过程实行自动化控制。弹道导弹按最佳攻击路线从发射到莫斯科防空区,通常需要(11~30)分钟(如从美国国土发射需要30分钟)。在这段时间内,首先借助雷达导弹发射地,判断其攻击方向和地点,并将所得目标指示数据传送给反导弹防御系统。然后,再对来袭导弹进攻方向进行检验。随后,系统进入战斗状态。多功能无线电雷达从众多真伪难辨的目标区分出“假”目标:哪些不带核弹头战斗部,哪些是积极干扰目标等。然后,雷达对核装置的目标实施跟踪,并指示反导弹导弹进行导弹拦截。

    美国军界曾对这个反导弹防御系统评价说,“在10年内,西方任何一个同类系统都不能达到这样的水平”。

    俄罗斯“飞毛腿”导弹

    第二次世界大战后,世界各国研制的50多种弹道导弹中,惟一经过实战检验的就是前苏联研制的:飞毛腿”弹道导弹,它也是实战中用的最多的弹道导弹。

    20世纪80年代的两伊战争时期,伊拉克和伊朗分别用“飞毛腿”改型的“侯赛因”导弹和“飞毛腿”B型导弹攻击对方的大城市。在长达52天的导弹袭城大战中,伊拉克发射了189枚“侯赛因”导弹,造成伊朗1000多人死伤,成为战争史上用弹道导弹相互攻击的首次战争。

    1979年,前苏联武装入侵阿富汗,并将大量的“飞毛腿”导弹运到阿富汗,提供给阿富汗政府用来对付阿富汗游击队。从1989年至1991年的近两年时间内,阿富汗政府向游击队发射了1000多枚“飞毛腿”导弹,这是世界战争史上动用弹道导弹数量最多的一次战争。

    1986年的美国和利比亚的军事冲突中,利比亚为报复美国对利比亚的空袭,用两枚“飞毛腿”导弹袭击美军设在意大利兰佩杜萨岛上的一个美军基地,但没有击中目标,在1991年的海湾战争中,伊拉克共发射了88枚“飞毛腿”改进型导弹——“侯赛因”导弹和“阿巴斯”导弹,其中46枚发射到沙特阿拉伯和其他海湾国家,42枚发射到以色列,使多国部队官兵和沙特、以色列两国人民心理上产生了巨大的恐慌。以色列十几万人离城疏散,一人一个防毒面具,形影不离;而多国部队动用相当大的军事力量——卫星、侦察系统、航空兵、导弹、特工人员等去搜寻它、摧毁它。即使这样,伊拉克的“飞毛腿”导弹还是不断袭来,使得多国部队收复科威特的地面进攻日期不得不推迟了3个星期。

    在1994年初的内战中,南也门军队先向北也门军队占领的地区发射了5枚前苏联提供的“飞毛腿”B型导弹,后又向也门首都萨那市郊;射了1枚“飞毛腿”B型导弹,从而使“飞毛腿”导弹首次成为一个国家内战的工具。

    1994年,伊朗向流亡在伊拉克的伊朗圣战者游击队的一个基地发射了3枚“飞毛腿”B型导弹,炸毁了一些建筑物,但没有造成人员伤亡。

    俄罗斯SS-11导弹

    SS-11洲际弹道导弹(前苏联的定名不详)于1966年开始服役,并发展成三种型式。本型导弹较民兵式导弹稍长但宽厚许多,因此可携行一较大型的弹头。它的两节推进火箭均使用可储存式液态燃料,第一节有4副平衡翼,1971年第一阶段战略武器限制协议(StrategicAnhsLimitationTalk,SALT)谈判中同意SS-11洲际弹道导弹可部署进970个掩体,包括66个新建的。

    一型具有单一大型弹头,一度传闻其当量高达2000万t。二型是前者的改良,具有较佳的射程、投掷重量、辅助穿透装置及较精确的弹头。三型是前苏联第一种配备多弹头重返大气层载具的陆基洲际弹道导弹,1969年侦测其具有3枚弹头。1973年60枚SS-11三型洲际弹道导弹服役。当1970年代末期这970枚SS-11导弹过半数为新的SS-17或SS-19所取代时,仍有450枚继续服役。然而,一旦机动的SS-25洲际弹道导弹进入部署时,更多的SS-11洲际弹道导弹将在10枚5S-11对9枚SS-25的合适比例下开始退役。

    本型导弹所部署的数量曾经举世无比(1972年达1036枚),现今仍有440枚服役中。据估计除了20枚一型外,其它则是二、三型的混编。这400多枚导弹主要部署在两个地带:前苏联西部地区的科泽尔斯克(Kozeisk)、台克夫(Teykovo)、彼尔姆(Penn)以及远东地区的格雷得卡亚(Gladkaya)、杜富亚尼亚(Drovyanya)、斯沃博德尼(Svobodny)、奥伏亚尼亚(Olovyannaya)。

    使用:SS-11一型及二型洲际弹道导弹均有单一的大型弹头。但是它们并不太准确,因此只能用来攻击大范围的、软性的、对抗价值取向目标(counter-valuetarget),如城市、工业中心及来经保护的军事设设。

    SS-11三型洲际弹道导弹有3具重返大气层载具而且是用来攻击陆基洲际弹道导弹掩体。的确,由前苏联的测试资料显示这3具所涵括的打击区域正是民兵式导弹掩体的范围,而这样的科技是从SS-9四型导弹上开发而来的。然而,由于更准确、更合适的弹头不断被开发出来,因此,即使踢-11三型洲际弹道导弹依旧瞄向美国,应该已改变了原先的攻击目标。将SS-11洲际弹道导弹部署在前苏联远东是极具价值的。它的射程可涵括中国大陆、日本及其它亚洲国家。

    俄罗斯“道尔”地空导弹

    俄罗斯是从20世纪80年代后期开始研制该型导弹的,这是当今世界上惟一一种采用垂直发射的低空近程地空导弹系统。西方把它叫做“萨姆”-15。1991年交付部队使用。“道尔”地空导弹系统能对付作战飞机以及那些精确制导的空地武器,是一种近程、低空的地空导弹武器系统。

    地空导弹是一种防空武器。世界各国从凹世纪40年代就开始研制。近几十年来,它的研制朝着两个方向发展:一种是以拦截弹道导弹为主,叫做反导弹武器,如美国的“爱国者”地空导弹系统;另一种是以拦截轰炸机、攻击机和直升机等低空目标为主,叫做防空导弹,如美国的“尾刺”防空导弹,可以在单兵肩上发射。

    将“道尔”地空导弹称为武器系统,是因为它包括一部搜索雷达,一部跟踪雷达,一部电视跟踪瞄准设备和导弹发射箱。导弹发射箱内装有8枚待发导弹。但是,这整个武器系统的所有装备,都是装在一辆越野性能良好的履带车上的。

    车上共载有3人:车长、操纵员和驾驶员。一辆车就是一个火力单元,从搜索、发现目标到完成任务,这辆车全都能独立完成。而且只需在导弹发射和制导时,车子暂时停下来。完成其他作战程序的时候,车子完全可以在行进中进行。这种武器机动灵活,生存能力强。

    要想对付精确制导的空地武器系统,导弹必须有高速的数据处理能力。从发现目标到发射导弹,反应时间要非常短。只有导弹自动化程度相当高,才能将判断过程所需要的时间缩到最短。“道尔”地空导弹系统有3台每秒100万次运算能力的计算机,整个作战程序高度自动化。操作员只需观察就行了,只有在敌方电子干扰比较严重时才实施于预。使用“道尔”地空导弹系统,从发现目标到发射导弹,只需(5~8)秒钟。

    它的导弹装在密封的四联装发射筒内。两个发射筒共8枚导弹都垂直地装在炮塔上。发射时,导弹的弹射系统把它推出发射筒,呈垂直状态升空。当升到几十米后,导弹开始转弯,向目标平面飞行。垂直发射可以用来对付各个方向来袭的空中目标。

    它的最大速度是850米/秒,射程(15~12)千米,射高(10~8600)米,它的战斗部是破片杀伤式的,用无线电引信来引爆,以便大范围摧毁目标。

    “道尔”导弹系统使用了多种传感器。在20世纪90年代,它是世界上同类武器中惟一具有三坐标搜索雷达的武器系统。这种雷达可以在足够大的范围内搜索;在25千米内提供48个来袭目标的距离、方位、高度和威胁程度的信息;可同时跟踪其中12个目标,能根据目标威胁力的大小,排出拦截的先后顺序。可以想象,当各种空地武器铺天盖地同时袭来时,“道尔”导弹雷达工作的覆盖面是相当大的,可以同时处理多个目标,还可以同时用两枚导弹攻击两个目标。

    “道尔”地空导弹系统还有另外两个传感器:一个是跟踪雷达,可同时跟踪两个目标,跟踪距离达25千米;另一个是电视跟踪瞄准设备,它的任务是当处于电子干扰的恶劣环境中,雷达无法工作时,它就取而代之,使“道尔”导弹能继续作战,这种设备最远能瞄准20千米的目标。

    为了保障“道尔”地空导弹系统的作战能力,部队还需配有运输装填车、导弹运输车和修理车。

    地空导弹

    也称“防空导弹”,是从地面发射,攻击空中目标的导弹由弹体、制导装置、动力装置、战斗部等组成。按射程可分为远程、中程和近程地空导弹。远程地空导弹最大射程越过100公里,射高达30公里以上,重量3~10吨,多用冲压喷气发动机,也有的用固体燃料火箭发动机,采用复合制导;中程地空导弹最大射程20~100公里,射高005~20公里,重量06~2吨,多用固体燃料火箭发动机;近程地空导弹最大射程小于20公里,射高0015~10公里,重量8~200公斤。

    中国人民解放军于20世纪50年代开始装备地空导弹,并于1959年10月7日在华北地区击落美制RB-57D高空侦察机,开创世界防空史上首次地空导弹击落飞机的战例。

    法国“飞鱼”MM40舰舰导弹

    “飞鱼”MM40导弹是法国研制的一种高亚声速、掠海飞行、超视距作战的反舰导弹,主要用于攻击各种水面舰艇。该导弹是世界上销量最大、用于实战最多的一种导弹。它是在“飞鱼”MM38和“飞鱼”MM39的基础上以较小的费用研制而成。1973年开始研制,1980年完成鉴定试验,共试射110枚,成功率为927%,1981年开始服役。到目前为止,“飞鱼”导弹已经发展了多个型号,可以潜射、舰射、岸射和空射,除法国自己装备以外,还出口英国、德国等几十个国家。

    该型导弹多次参加实战,尤其是在1982年的的英阿马岛之战中,阿根廷空军就是用“飞鱼”导弹击沉英国“谢菲尔德”号驱逐舰和重创“格拉摩根”号驱逐舰的。此外,在两伊战争和海湾战争中也曾被多次使用过,并且取得了非常好的作战效果。据实际统计,其可靠性和命中概率均高于相应的设计值,分别高达93%和95%。

    “飞鱼”导弹采用触发延时和近炸双重引信,可以“发射后不用管”,全天候作战。中段采用简易惯性制导,末段采用主动雷达导引。战斗部为半穿甲爆破型,重165千克。动力装置采用一台固体火箭主发动机和一台固体火箭环形助推器。其所用固体火箭主发动机比“飞鱼”MM38导弹有较大的改进。

    导弹全长58米,弹径035米,翼展1135米,尾翼展760毫米,全弹重855千克。最大射程70千米,飞行速度为马赫数093,弹道最高点不超过60米,标定值为30米,巡航高度为巧米。

    1969年法国与英国曾协商过共同研制“飞鱼”导弹,但现在,法国无论有没有英国的合作,仍在继续对“飞鱼”导弹系列进行新的改进。

    美国“阿斯洛克”舰潜导弹

    这是一种由水面舰艇发射的近程弹道式反潜导弹,也是世界上装备最多的一种反潜导弹。该导弹于1956年6月开始研制,经过三年多的时间;进行了成功发射试验后才正式投入生产。“阿斯洛克”导弹从1961年夏天起开始装备美国海军驱逐舰、护卫舰和巡洋舰,日本的“天津风”号驱逐舰装备的也是这种导弹。

    导弹弹长457米,弹径0337米,全弹重486千克,最大射程,8千米,飞行速度近似声速。导弹弹体呈圆柱形,弹体分为两段,前段是鱼雷,后段是火箭发动机,具有十字形尾翼。制导与控制装置在导弹发射后按无控弹道飞行,由舰载声呐测定目标位置。战斗部为音响寻的鱼雷或核深水炸弹。动力装置采用固体火箭发动机。

    在作战时,目标潜艇的航向、距离和速度由舰上计算机在声呐发现潜艇后的几秒钟内算出。八联装的标准发射架或改进的双联装“小猎犬”导弹发射架对准方向,于是,舰上司令官选定装有最合适的战斗部的导弹,并把它发射出去。在飞向目标的航线上,“阿斯洛克”导弹按预定的信号抛掉其火箭发动机。然后,绑住弹体的一条钢带被一小的炸药炸开。于是,弹体降落,让深水炸弹落入水中,或用降落伞使鱼雷减速,降至水面。

    美国“捕鲸叉”舰舰导弹

    “捕鲸叉”导弹是美国研制的一种亚声速全天候中程巡舰战术反舰导弹。由于该导弹具有良好的作战使用性能,因此,它是目前世界上装备最广泛的反舰导弹,仅美国就有234艘战舰已装备或等候装备这种导弹。有多达16个国家已装备或等待装备该型导弹,其中亚洲国家主要集中在日本等国。它是由麦克唐纳公司、道格拉斯公司于1972年开始为美国海军研制的,1981年开始装备潜艇。整个武器研制计划由美国海军空中系统司令部管理并得到海军军械系统司令部的支持。这意味着“捕鲸叉”导弹能够从飞机和军舰上发射以攻击军舰等目标,并具有较远的射程。该型导弹已多次参加过实战。在海湾战争中,美军所有参战舰艇都装备有“捕鲸叉”导弹。

    目前,已装备或正在装备该导弹的攻击型核潜艇有“鲟鱼”级、“长尾鲨”级、“一角鲸”级、“科普斯科姆”级和“洛杉矶”级。一艘战舰上装备2个四联装箱式发射装置,配备8枚导弹,个别大吨位级别的战舰有4个发射架,配备16枚导弹。1982年,潜射“捕鲸叉”导弹开始向英国、日本出售,英国还获得其生产权。导弹的单价略高于924万美元。导弹装在浮力运载器内,通过鱼雷管投射,出管速度达1524米/秒。在浮力作用卞,以45°倾斜角爬升到水面,出水时导弹助推器点火,导弹以log的加速度射出。助推器脱落后发动机启动,控制系统开始工作,使导弹转为巡航飞行。运载器长625米,直径530毫米,重400千克,净浮力为2668牛。

    该导弹弹长4581米,弹径344毫米,发射质量667千克。最小射程11千米,最大射程110千米。巡航高度中段为61米,末段为15米,巡航速度为马赫数075,鱼雷管水平发射,发射深度从潜望镜深度到水下(30~50)米。采用宽频率捷变主动雷达导引头和先进的计算机逻辑电路,以提高抗干扰能力。该导弹具有末段突然跃升而后俯冲攻击目标的能力。

    制导体制为中段惯性制导和末段主动雷达寻的导引。采用MK-,113或MK-117后控系统,其主动声呐定向探测距离可达65千米,全向探测距离达15千米;被动声呐全向探测距离达176千米。

    战斗部为半穿甲爆破型,重约230千克,配以延迟触发和近炸引信。动力装置采用固体助推器和涡轮喷气发动机。

    中国“海鹰”舰舰导弹

    1967年8月2日,中国研制的第一枚舰舰导弹一“上游”1号生产定型。随着科技水平的不断提高,“上游”导弹也不断改进,改进后的导弹被命名为“海鹰”舰舰导弹。从此,我国第一代舰舰导弹诞生了。

    1960年初,中国海军导弹的研制跟其他军兵种同时起步。当时刚好从前苏联引进一种“冥河”式导弹正要上马,恰巧遇到三年自然灾害,国家陷入极端艰难的境地,然而中央军委却下令坚持用仿制“冥河”式导弹的方法来研制自己的舰舰导弹。于是,海军立即组织试验基地,南昌飞机制造厂被确定为仿制单位,李同力、吕琳先后为总设计师。他们在荒无人烟的山谷海湾里,开始了艰苦的仿制工作。

    这种仿制的导弹称为“上游”舰舰导弹。1963年10月开始试制。1964年底,科研人员冒着摄氏零下20多度的严寒,在西北沙原上展开了陆上模型弹的试验,接着又进行了海上模型弹的试验、陆上全弹试验,各项试验均成功地获得了全部所需数据。1966年开始海上发射试验,主要验证一下全弹在海上发射时结构的完整性,同时检查导弹的飞行性能及控制系统,主发动机电器设备等各个系统的工作状态是否正常。同年8月完成飞行试验。11月进行了定型试验,并取得9发8中的优异成绩。从此,结束了中国不能生产海防导弹武器的历史,翻开了我国海军装备发展史上新的一页。

    由于当时的技术水平有限,该导弹还存在许多缺点,比如弹体笨重,液体燃料推动力小,抗干扰能力差,飞行高度等都不理想。尤其是“冥河”导弹的实战应用结果带来了一定影响。1967年10月,埃及首次使用“冥河”导弹击沉以色列驱逐舰“埃拉特”号后,而到1973年,由于以色列采用了电子干扰系统,导致埃及发射的50枚“冥河”导弹无一命中目标。为此,我国科技人员总结了国内外的经验,对仿制的“上游”导弹进行了一系列的技术改进。这些改进主要有以下几个方面:

    (1)为增强导弹本身的电子对抗能力,陆续研制成功并换装了多种末端制导头,因而相应地发展了几种改进型导弹;

    (2)改装无线电高度表,提高了导弹的低空突防能力;

    (3)把液体燃料贮箱改为承力式,以增加燃料的储量,加大动力,提高了导弹的有效射程;

    (4)开展了海浪特性研究,以增强导弹适应恶劣作战环境的要求;

    (5)向多种装载平台发展,以便适应岸防、舰载、机载等多种平台使用;

    (6)对液体燃料预包技术进行研究,为长期有效贮存开辟新途径;

    (7)火控系统采用电脑控制,从而提高了系统工作的可靠性。

    接着,我国又建立了海防导弹研究机构,形成了比较完整的研究生产线,同时锻炼和培养了使用部队和试验部队,并装备了我国第一个反舰导弹系列。随后,我国又研制出“海鹰”1号等舰舰导弹,形成了各种型号、不同性能的舰舰导弹系列。

    反舰导弹

    “阿斯洛克”RUR-SA导弹是美国研制的一种由水面舰艇发射的短程弹道式反潜导弹,1961年开始装备。

    该弹制导方式采用程序控制加音响寻的制导。主要由程序机构和分离机构组成。动力装置为一台固体火箭发动机。

    该弹有MK1和MK2两种类型。

    MK1型弹长394米,弹径349毫米,翼展838毫米,发射重量42774千克,射程32~9千米,飞行速度为近音速,作战负荷为1枚MK17核深水炸弹,重126千克,其当量为1千吨级,能击毁离爆心3~9千米的潜艇。

    MK2型弹长45米,弹径3367毫米,翼展838毫米,发射重量48625千克,射程1~8千米,飞行速度接近音速,作战负荷为一枚MK44或MK46鱼雷。MK44鱼雷重233千克,航速30节。MK46鱼雷重270千克,最大航程11千米,航速33节。

    美国“龙”式反坦克导弹

    “龙”式反坦克导弹是由美国麦克唐纳·道格拉斯公司研制的。这种导弹研制之初是用来代替90毫米无坐力炮的,其射程和精度方面都远远超过了无坐力炮。再加上其弹体短小,易于携带,因此被称为世界上最矮的导弹。

    “龙”式反坦克导弹最先称为中型反坦克二突击武器。它是美军1974年装备的第二代单兵便携式、肩射反坦克导弹,主要用于中距离反坦克,可攻击坦克、步兵战车和其他装甲车辆,也可攻击野战工事。

    该导弹动力装置为数对小固体火箭发动机,沿弹体周围成行排列。它的弹体呈圆柱形,弹长为074米,弹体直径为114毫米。近尾部处呈锥形,具有短卵型的头部。在导弹的尾部有三个弯曲的折叠尾翼,翼展为33厘米,在发射后可自动弹开。“龙”式反坦克导弹有足够大的战斗部,并可携带高能炸药24千克,能摧毁大多数带装甲的和其他的步兵目标。其射程为(60~1742)米,发射质量为613千克,垂直破甲厚度为500毫米。它的制导与控制由自动指令视线瞄准系统进行有线制导,并由弹体周围侧向推进器控制。

    由于该导弹质量很小,只需一人即可携带并发射。发射时,步兵首先把跟踪器装在导弹发射筒上,它包括望远镜瞄准器、探测装置和屯子组件。它的玻璃钢发射筒同时也是一个导弹的密闭容器,供运输和贮存用,容器的尾部增大用来形成推进剂容器和后膛。在瞄准器捕获目标后,跟踪器就感受到导弹与瞄准线的相对位置,并及时发出信号使导弹保持或修正飞行航线。通过点燃相应的各对火箭发动机或者侧向推进器,来实现对导弹的推进和控制。

    “龙”式反坦克导弹于1964年开始研制,1968年中期开始肩扛发射试验。1971年作了使用试验,直到1972年才正式投入批量生产,它主要用于装备海军陆战队和陆军。

    “米兰”反坦克导弹

    “米兰”导弹是第二代轻型便携式反坦克导弹武器系统,主要用于攻击坦克、装甲车辆和其他防御工事。这种导弹仅重665千克,是世界上最轻的导弹。它由法国航空航天公司战术导弹部和德国MBB公司组成的欧洲导弹公司研制而成。“米兰”导弹研制之初是专为步兵设计的,后来,经过进一步改进发展成车载发射装置,法国和德国分别于1972年和1974年装备部队。1983年开始对“米兰”进行改进,改进后的“米兰”称为”米兰”-2。到目前为止,世界上装备“米兰”导弹的总数已超过20多万枚,销往37个国家,导弹的销售单价为3000美元,武器系统为37万美元。它曾多次用于局部战争和武装冲突,实战证明十分有效。

    “米兰”导弹采用光学瞄准与跟踪、红外测角技术,其设备主要有控制箱、弹架、三角架及发射点火装置。整个系统重155千克,长、宽、高分别为900毫米、420毫米和650毫米。筒装导弹长126米,导弹本身长755毫米。弹身最大直径为116毫米,战斗部直径为103毫米。翼展266毫米。弹重665千克,炸药重145千克,其中RDX弹药和TNT弹药的比例为3:1。导弹起飞质量为11。3千克,战斗部采用聚能破甲装置,重3千克。它的最大射程为2000米,最小射程为25米,导弹离开发射筒口的初速度为75米/秒,最大速度为200米/秒。射击精度按圆概率偏差计算小于05米。“米兰”原型的破甲厚度为690毫米;改进后的“米兰”-2破甲厚度为850毫米,但它抗烟雾与火光干扰的能力较差,不如“米兰”原型。

    “米兰”导弹的动力装置为弹室双推力结构,外径85毫米,内装双基药。第一级增速发动机的装药燃烧13秒,可产生275牛的推力;第二级续航发动机的装药燃烧11秒,可产生108牛的推力。

    在机动方面,最小转弯半径为500米。武器系统的可靠性大于95%。最大射程上的发射速度大于3发/分。“米兰”在发射前的准备时间小于50秒。飞行2000米的时间为125秒;飞行1000米的时间为73秒。它可在零下(40~52)℃的环境中使用。

    “米兰”武器系统用于地面发射时,由两个人就可以完成发射任务。其中,射手带一套发射制导装置,助手携带两发弹药(其余弹药由车或直升机运输)。当该系统用于车载发射时,可将三角架装在车顶,也可装在车体内,还可利用Mcr炮塔,这三种发射方式都是适用的。当这一系统用于机载发射时,可将其装在“小羚羊”轻型直升机上。

    “米兰”武器系统经过1983年第一次改进后,现在MBB公司又为“米兰”研制了一个双重战斗部,其特点是有一个可以伸缩的、保证最有力炸高酌长探针,探针前端有一个大于30毫米直径的空心装药装置。

    对于整个“米兰”导弹的综合性改进方案的具体内容如下:

    (1)给现有导弹装上一个固体激光近炸引信,从而可使弹径为103毫米和115毫米的战斗部的破甲性能提高25%~30%;

    (2)为未来的导弹发展最佳化的3千克的战斗部,以攻击复合装甲、多层间隔装甲和反爆炸装甲;

    (3)为减少对先进的自卫系统(假目标)所施放红外诱饵的敏感性,且避免导弹红外背景烟雾的影响,装备与“陶”-2相同的模块式红外信标,或装备与“比尔”相同的编码式激光二极管;

    (4)用数字式设备取代现有的模拟定位器、制导指令发射装置和译码器。这样可使平均故障间隔时间增加一倍,并可提高导弹接受指令的敏感度,减少导弹及其发射装置的质量;

    (5)使用无烟火箭发动机,将大大增加最低有效射程,提高自身的隐蔽性;

    (6)减轻导弹贮弹箱的体积和质量;

    (7)用凯夫拉或碳复合材料代替导弹发射装置的铝支架、三角架和制导指令发射装置盒,可使质量减轻22千克;

    (8)采用电制冷的热成像仪,它比原来的光学瞄准具的体积小,且质量减轻1/3,还可简化后勤设备。

    美国“海尔法”反坦克导弹

    这是一种射程最远的第三代重型反坦克导弹,由美国罗克韦尔国际公司研制。它可由直升机载发射,主要配备于AH-64武装直升机上,也可由地面车辆发射,用来攻击坦克、装甲车辆和其他坚固的点目标。可全天候使用,能在正常战场烟尘和小雨、大雾中锁定目标。由机载发射的最大射程为7000米,是当前世界上射程最远的反坦克导弹。它的最大速度为1倍声速,命中概率大于90%,破甲威力达1400毫米。该导弹于1972年开始研制,1984年装备部队。同年,美国海军陆战队也用它装备了44架AH-1T直升机,海军舰队装备了48架AH-1TS直升机。1985年具备初始作战能力。

    “海尔法”导弹由导引头、战斗部、自动驾驶仪舱、发动机和作动系统组成。采用模块式设计方式,可选用不同的制导方式,配装不同的导引头。全弹长1779米,弹径1778毫米,翼展330毫米,发射质量43千克,贮存期限为10年。

    该导弹采用半主动激光制导。制导系统由激光导引头、自动驾驶仪、作动系统组成,总重为9000克。导引头长330毫米,最大直径152毫米,重5400千克。动力装置为单级固体火箭发动机。发动机外径为146毫米,长943毫米,推力丸186千牛。采用双锥串联型聚能破甲装药战斗部,破甲厚度500毫米。

    发射制导装置由机载发射系统和激光指示器组成。机载发射系统包括火控系统和发射架两部分组成。AH-64武装直升机最多可挂载16枚“海尔法”导弹,它们分装在4个发射架上。发射架系铝制组合式,由电子装置和机械装置组成。武器系统由导弹、激光指示器、机载发射系统组成。导弹可用多种发射方式,如单个发射、快速发射、连续发射与组合发射。射手可根据实际情况,灵活选用最佳的发射方式。

    “海尔法”是一种先进的反坦克导弹。它可以间接发射,利用机载或地面激光指示器来指示目标,因此具有较强的抗于扰能力。该导弹不但命中精度高,而且还可以在夜间或不利的气候条件下对目标实施有效打击。

    美国“黄峰”反坦克导弹

    “黄蜂”导弹是美国空军专门用来对付集群坦克的一种机载武器,也是最早实现智能化的反坦克导弹。就是说,这种导!弹具有“自我思维能力”,当导弹从发射管发射后,每个导弹上的毫米波雷达扣缸外线跟踪器便自动开始工作,使导弹不仅能追踪辐射热的物体,而且配备的识别装置和微处理器使它能区别开哪些是伪装物,哪些是坦克。特别是导弹上的计算机,使每个“黄蜂”导弹都能自己选择一个坦克跟踪,一旦被选择的坦克已被别的导弹跟踪或已被击毁,它还会机敏地飞向另一辆坦克,真正可以称得上是弹无虚发、发射后不用管的导弹。

    那么,这种发射后不用管的导弹又是如何研制出来的呢?

    1980年,美国宣布要增加国防预算,大力研制新型战略洲际导弹、飞机和坦克,用来对付未来战争中可能出现的集群坦克。由于当时北约国家在西欧的坦克数量比较少,如果用坦克来对付集群坦克,那就得生产足够数量的新型坦克,这需要很大一笔经费。以美国M-1型坦克来说,当时每辆造价达120万美元,几千辆这样的坦克就要几十亿美元。

    为此,美国政府大动脑筋,最后设想,如果用导弹一对一地歼灭集群坦克,一定是合算的,所以就决定要研制一种名叫“黄蜂”的新型导弹,用来对付集群坦克在数量上的优势。他们还算了一笔账:“黄蜂”导弹每枚造价只需25万美元,相当于M-1型坦克造价的1/48。将来打起仗来,用一枚“黄蜂”导弹去击毁一辆坦克显然是值得的。但问题又出现了,要想用一枚“黄蜂”导弹击毁一辆坦克,就得要求“黄蜂”导弹命中精度必须达到百发百中,为此,美国采用了现代高新技术,很快就研制成功了具有智能的“黄蜂”导弹。

    “黄蜂”导弹采用毫米波雷达和红外线跟踪器制导。毫米波雷达是一项新技术。一般的雷达使用的是厘米波,虽然厘米波可以透过云、雾、雨、雪探测目标,但需要甩大型天线来提供导弹探测器所需的分辨率,而且易被敌方电子设备干扰和发现。毫米波雷达就不同了,它可以使用小型天线,这样就不易被发现,而且抗干扰的能力也较强。另外,在“黄蜂”导弹上还装备有识别装置和微处理器,使它能识别不同的目标,并能自动追踪目标,直到将目标击毁。

    “黄蜂”导弹主要装备在美国F-16战斗机上,一次可携带2个发射吊舱。这种导弹既可单个发射,也可一次连续发射12枚,发射完毕,将吊舱抛掉。

    美国“爱国者”地空导弹

    美国“爱国者”导弹是一种最早采用多功能相控阵雷达的导弹,并在1991年的海湾战争中成功地拦截了“飞毛腿”导弹而声名鹊起。

    这种导弹所用的相控雷达能同时跟踪100多个空中目标,并能同时指挥9枚导弹进行拦截。该导弹在1980年开始小批量生产,1985年装备部队,主要用于对付20世纪80年代以后问世的高性能飞机、空地导弹、战区弹道导弹和巡航导弹等空中来袭目标,也适用于野战防空、国土防空和要地防空等。其最大作战距离约为100千米,理论杀伤概率大于80%。

    “爱国者”导弹采用初段程控、中段无线电指令、末段半主动雷达寻的的复合制导,并采用多功能相控阵雷达,能同时拦截多个目标,是当前先进的防空导弹。其有效射程(3~80)千米,有效射高(03~24)千米,全弹长53米,弹径0406米,翼展0852米,发射质量800千克,最大飞行速度(5~6)倍声速。动力装置为一台高能固体火箭发动机。战斗部为破片杀伤型,杀伤半径20米。

    “爱国者”导弹的武器系统由火控和发射架两大部分组成。火控部分包括雷达车、指挥控制车、天线车和电源车。指挥控制车是整个武器系统的大脑,由一名指挥官和两名操作手通过控制台就可以完成作战全过程。这种导弹之所以引人注目,主要是因为它采用了性能先进的相控阵雷达。

    如果把指挥控制车称为导弹的“大脑”,那么,相控阵雷达就可称得上是“爱国者”的“眼睛”。“爱国者”导弹系统每个发射连配备一部MPQ-53相控阵雷达,可控制8个四联装导弹发射装置。该雷达负责搜索、跟踪、敌我识别、指挥导引导弹攻击于一身。其雷达搜索角度为90°,跟踪角度为12°。它工作在G波段。探测目标时,其电子扫描波束能立即测出目标的方位、高度,搜索范围约(3-170)千米,能同时踊跃拦截多个目标。

    “爱国者”导弹的雷达天线很独特。它的相控阵天线呈方盒形,安装在一辆拖车上。天线由若干组模块构成,其中一组为主天线,由此及彼61个收发模块构成圆形阵列,其功能是同时发出对目标搜索、跟踪、照射、导引指令等不同波束;另外一组在主天线的左下方,由251个模块组成小的圆形阵列,专门负责接收“爱国者”导弹传送来的信息,并传给拦截控制站的数字式武器控制计算机进行计算。目标数据处理完毕后,则由雷达的指令或雷达探测波束回传给导弹,导弹上的两组导引天线接收到这些导引信号后,利用弹内导弹元件将其转成控制信号传至控制面,导引导弹飞向目标。

    在主天线下面还有一组长条式阵列横向排列,它是敌我识别系统。另外还有5个六角形(各51个模块)阵列,其中2个位于敌我识别阵列上方左右两侧,其余3个位于天线板的下方中央位置,这5个小天线阵列的功能是在降低电子干扰时,用来滤除敌方的电子干扰信号。这些模块由计算机管理,采用时分复用方式,就是在一条信道传输时间内,若干路离散信号组成时域互不相叠的群路信号一并传输,以百万分之一秒的间隔时间去运算,使搜索、跟踪、导引、敌我识别、电子对该雷达还有欺骗反辐射导弹(反雷达导弹)设备,即ARM-D反辐射导弹诱饵。它可发出类似MPQ-53雷达频率、波幅的电子信号,使来袭的反辐射导弹去追踪该诱饵,从而保护了雷达的安全。

    当该导弹获取入侵目标信息后,导弹就进入作战准备状态,地面雷达开始搜索,一旦发现目标,立即进行监视、跟踪,指挥控制系统进行敌我识别和威胁判断;然后确定有线攻击的目标和拦截时间,并选定发射架,将发射前需要的数据、程序送给导弹;接着发射导弹,导弹便按预定程序飞行,同时雷达搜索跟踪目标,并以指令不断修正导弹飞行弹道;当雷达收到目标反射回来的信号后,导弹由指令制导自动转入半主动雷达寻的制导;当导弹与目标间的距离达到杀伤威力半径时,引爆战斗部,摧毁目标。

    海湾战争中,“爱国者”导弹有效地拦截了伊拉克发射的地地战术导弹——“飞毛腿”导弹“爱国者”导弹在实战中经受住了考验,从而证明了该导弹性能的先进性,同时也显示了高技术成果在战争中的良好应用。

    法国“响尾蛇”地空导弹

    这是世界上最早的一种低空近程全天候地空导弹系统,主要用来对付低空和超低空战斗机、武装直升机,以保卫机场、港口等要地和行进中的野战部队,其改进型还可用来对付巡航导弹。

    法国于1964年开始研制“响尾蛇”导弹,1965年通过首批25枚导弹的飞行试验,1969年进行导弹拦截靶标的飞行试验,1971年开始向南非和智利等十几个国家提供装备。1993年法国对这种导弹进行改进,制成了新一代“响尾蛇”导弹,用来取代现役“响尾蛇”、“罗兰特”等地空导弹。

    “响尾蛇”导弹主要用来对付最大飞行速度为4000米/秒,雷达反射截面为1米2,水平机动过载为2g的战斗机、轰炸机和武装直升机等目标。导弹的作战半径为(500~8500)米,作战高度为(50~3000)米;单发杀伤概率为50%~75%双发)680%~90%;反应时间:正常目标为10秒,紧急目标为6秒。导弹采用全程无线电指令制导。

    这种导弹可用火车、飞机运输,最大行驶速度为60千米/小时。新一代“响尾蛇”导弹弹长229米,弹径0165米,全弹重75千克,有效射程(500-11000)米,有效射高(15~6000)米,最大飞行速度为36倍声速。

    轨道式导弹

    轨道式导弹是将弹道式导弹的弹头送入地球卫星运行的轨道上并控制弹头在目标区上空制动,使其再入大气层以攻击目标。由于弹头运行的轨道通常不足一圈,所以又叫部分轨道武器。轨道导弹和洲际导弹没有多大区别,只是弹头和制导系统更复杂一些。

    1957年8月对日,前苏联的P-7洲际导弹发射成功。接着又研制成功SS-9洲际导弹。

    与此同时,1958年11月,美国阿特拉斯导弹,在经过几次失败之后,首次试飞9000千米成功。它重约100吨,速度是音速的15倍。同年12月,又将一颗阿特拉斯导弹送入地球轨道。

    1959年12月,它的飞行距离达1万千米。此外美国还研究了大力神土星和新星等大型导弹。

    这些大型洲际导弹都可视为轨道式导弹。轨道式导弹可以攻击地球上的任意目标,突防能力很强。因为在制动发动机点火使弹头下降前,反导系统无法判断轨道导弹究竟从哪一点开始下降进行攻击,由于它的轨道比弹道导弹的轨道低的多,从开始下降到击中目标的时间只有几分钟,因而造成对方的反导系统来不及反应就被击中。不足的是,轨道导弹有效载荷小,技术复杂,为使弹头入轨,导弹必须加速到79千米/秒,需要较大的运载火箭。

    另一方面,轨道导弹还要求有技术更为复杂的制导设备,否则就不能准确地控制弹头进入目标区的投放点。

    洲际导弹

    射程在8000千米以上的弹道式导弹,就叫洲际导弹。

    这种导弹可以从地球上的一个洲飞到其他任何一个洲,故“洲际导弹”以此而得名。前苏联于1957年8月26日试射SS-6弹道式导弹获得成功,其射程达到8000千米以上,这便是世界上第一枚洲际导弹。这种导弹主要用来袭击敌方的重要固定目标,可以携带核弹头。

    洲际导弹的全称是“洲际弹道导弹”。为什么要给这种导弹加上“弹道”二字呢?就因为它是按预先计算好了的弹道来飞行的。

    这种弹道式导弹的发射和巡航式导弹不同,它是竖立在发射台上进行发射的。发射后垂直上升,在上升到一定高度之后,再按预定轨道飞行。由于它主要是在没有大气的外层空间进行飞行的,所以这种导弹不需要弹翼,而只有用来保持弹体平衡的尾翼。

    目前各国所拥有的洲际导弹中弹体最长的要数俄罗斯的“瘦子”洲际导弹。它长达30余米,足有十几层楼房那么高。这种洲际导弹的射程可达12000千米。

    目前飞得最快而射程最大的洲际导弹,是美国的“大力神”’洲际导弹。“大力神”导弹的飞行速度超过每秒7千米,超出声音传播速度的20倍。它的射程可达15000多千米。

    需要特别指出的足,现在的洲际导弹大多具有“分头术”,名之曰“多弹头分制导”,就是在快要达到目标的时候,由导弹“母体”内同时射出许多个带有核弹头的小导弹。这些小导弹一个一个都像长了“眼睛”一样,分别地飞向不同的目标,使人防不胜防。

    反雷达导弹

    雷达被人们誉为飞机、火炮和导弹的“千里眼”,它发射的电磁波遇到飞机或导弹时就能被反射回来,利用这个原理就可以发现和跟踪目标,以便对目标进行攻击。电磁波是雷达克敌制胜的法宝,然而在现代战争中同时也成了它的一个致命弱点。

    现代电子战的软杀伤,就是用杂波和金属箔条等对雷达的电磁波进行干扰和迷惑,使它失灵或变成“瞎子”;而硬杀伤则是用反雷达导弹等火力直接将雷达摧毁,使依赖雷达的飞机、火炮和导弹失去战斗力。

    反雷达导弹的“聪明”之处在于,它能巧妙地利用雷达发射的电磁波进行自动追踪,“顺藤摸瓜”,直到将雷达击毁为止。

    后来又出现了第二代反雷达导弹——“哈姆”高速反雷达导弹。在它上面装有记忆装置和控制“电脑”。这样一来,即使雷达关机不发射电磁波,“哈姆”也能凭它的“记忆”继续攻击目标;或当雷达改变频率时,它也能进行快速修正。这就叫做“道高一尺,魔高一丈”。在1986年发生在锡德拉湾战斗中,美国的“哈姆”几乎弹无虚发地完成了击毁利比亚雷达阵地的任务。

    地地战术导弹

    地地战术弹道导弹通常是指射程小于1000千米的地地近程弹道导弹。海湾战争表明,它是具有威胁和实战能力的撒手锏。21世纪的地地战术导弹命中精度高、突防能力强、作战机动灵活、反应迅速、可携带多种常规弹头、能攻击战役战术纵深的多种目标,是威力很强的中远程精确打击武器。其主要发展趋势是:

    21世纪初叶,称雄世界的地地战术导弹将是美国的MGM-140陆军战术导弹和俄罗斯的SS-X-26导弹。

    它们的共同特点是:采用各自的卫星定位系统,命中精度可达15~30米,成为名副其实的精确打击武器;采用多种弹头,既可带集束式子母弹,也可带具有不同功能的弹头,如智能反装甲弹药、传感器引信于弹药、燃料空气弹、钻地弹和电磁脉冲弹等等,用于反装甲、反机场跑道、反硬目标和反信息武器装备,实现一次打击多目标摧毁;显著提高导弹的突防能力、生存防护能力、快速反应和机动能力。

    空空导弹

    空空导弹是指从空中平台发射、攻击空中目标的武器。可分为近程、中远程和超远程3大类。

    新一代近程空空导弹将具有超音速、大过载、大离轴角发射的能力。美国的A1M-9X、俄罗斯的R-73、R-73EL、英国的ASRAAM“先进短程空空导弹”:等都属此例。而A1M-9X的最大离轴角达±90°,过载达509,最大飞行速度3M,为其中佼佼者。而俄罗斯未来的R-73近程空空导弹的发展型也将具有90°离轴角发射能力,它采用激光近炸引信,并具备前向发射、攻击尾随目标的能力。

    到2020年前后,美国的双射程空空导弹将服役。

    它具有180度角离轴发射能力。远程迎面拦截距离达185千米,近程格斗距离只有460米,并能在9、37、93千米处迎面拦截目标。在2020年后,将逐步取代A1M-120和A1M-9X导弹此外,法国的“米卡”空空导弹可根据远程、中程或近程作战任务,选用不同的战斗方式、雷达导引头和红外导引头,是一种多用途空空导弹。

    制导系统

    引导飞行器克服各种干扰因素自动飞向目标的整套设备,又称导航系统。制导系统通常安装在各种类型的无人驾驶飞行器如导弹(包括鱼雷)、航天器和无人驾驶飞机上,实现自动控制。在有人驾驶的飞机、舰船和潜艇中,也常用制导系统来协助领航员工作。在飞行器中,制导系统常常与姿态控制系统(又称自动驾驶仪)交联在一起。制导系统一般由测量装置(探测机构)、制导计算装置(决策机构)和执行机构组成(见图),它的工作原理是测量飞行器相对于目标或某一基准的位置和速度,按预定算法进行计算,形成制导指令,通过姿态控制系统控制飞行器,使它沿着适当的轨道飞行。

    发展概况

    1908年船用罗盘的出现标志着现代导航和制导技术的开始。1932年美国R.H.戈达德首次将陀螺仪和燃气舵用于控制火箭飞行。同一时期,无线电导航系统如无线电信标和无线电罗盘开始用于飞机导航。第二次世界大战期间,德国科学家研制出一套简单的惯性制导系统并将它用于V-2导弹上,直到80年代许多运载火箭和导弹仍然采用这种惯性制导原理。战后一些主要的工业国在制导系统的研究和发展方面取得重大的进展。

    20世纪50年代,惯性制导系统已用于飞机和潜艇导航,而导弹主要采用无线电-惯性复合制导。这一时期人们逐步解决了指令制导、波束制导和寻的制导的基本技术问题,红外制导虽已经采用,但性能较差。随着惯性仪表精度的提高和误差分离与补偿技术的发展和应用,惯性制导系统的精度显著提高。

    20世纪60年代,惯性制导系统得到广泛应用。这一时期光学跟踪和光电制导技术也有所发展。

    20世纪70年代,制导系统的种类日趋齐全,精度大大提高,并用于各种低空飞机、无人驾驶机、导弹和航天飞行,如中国的返回卫星和通信卫星工程,美国的“阿波罗”登月工程和航天飞机等。

    类型

    制导系统的种类很多,按制导方法大体上分为6类。

    ①自主式:这种制导系统根据飞行器内部或外部的参考基准来控制飞行器飞行,它不需要任何人为的控制和导航,也不需要地面设备配合工作,因而抗干扰能力强。应用这种方法的系统有惯性制导系统,天文制导系统。

    ②波束式:波束制导系统用电磁波束导引,又称驾束制导。常用的波束为无线电波束和激光波束。用激光波束制导时,抗干扰性能更好。这种制导方法的制导精度随距离增大而降低。

    ③指令式:指令制导系统是从飞行器以外的制导站发出指令来控制飞行器飞行。

    ④寻的式:装在飞行器上的敏感器(导引头)感受目标辐射、散射的能量或声音,自动形成制导指令控制飞行(见寻的制导系统、鱼雷声导系统。

    ⑤图像匹配式:图像匹配制导系统利用遥感特征图像把飞行器自动引向目标。

    ⑥复合式:复合制导系统将上述两种以上方法组合起来,以充分发挥各自的优点。

    如果按制导所用的物理量的性质区分,制导系统还分为无线电制导、红外制导、激光制导、雷达制导、电视制导等。

    自主式制导系统

    这类系统的特点是完全自主,控制导弹飞行的导行信号由导弹本身的制导设备产生,同目标或指挥站不发生关系,不容易受干扰。这类制导系统,因为程序是预先确定的,所以只适用攻击固定目标。它包括:

    根据物体惯性,测量导弹运动加速度,以确定导弹飞行轨迹的惯性制导;

    依据地形特点引导导弹飞向目标的地形匹配制导;

    根据宇宙空间某些星体和地球相对位置来进行引导的天文制导;

    根据预先装好的程序控制导弹飞行的方案制导。

    遥控式制导系统

    这类系统,依靠制导站给导弹提供导引信号,还可以根据目标运动情况随时改变飞行弹道,适用于攻击活动目标。有指令制导和波束制导之分。

    有线电指令制导

    有线电指令制导,导弹同指挥站有导线相连,指令由导线传给导弹。制导设备简单,抗干扰能力强,缺点是受导线长度限制,作用距离一般在1公里以内。光纤技术兴起以后,作用距离增大。

    无线电指令制导

    无线电指令制导,最常用的是雷达,跟踪目标和导弹,由计算机算出位置、距离和速度等参数,形成指令发给导弹。这种制导方式,在一定距离内制导精度高,缺点是容易被敌方发现,抗干扰能力差。

    电视指令制导

    电视指令制导,由导弹上的摄像机摄取目标及背景图像,发送给制导站,再由制导站形成指令,引导导弹击中目标。优点是一目了然,在多目标情况下还可以选择最重要目标首先攻击,缺点是受天气影响,作用距离不大。

    雷达波束制导

    雷达波束制导,利用雷达无线的定向辐射,在空间形成一个狭窄的锥形旋转波束,波束自动跟踪目标,导弹沿波束轴线飞行,直到击中目标。这种制导方式,受无线电干扰,导弹容易脱离波束,现在已经很少采用。

    激光波束制导

    激光波束制导,用激光器瞄准目标,不断发射激光波束,引导导弹命中目标。这种制导方式,很适用于反坦克导弹,缺点是激光器一刻也不能停止工作,容易被发现、干扰。

    自动寻的制导系统

    自动寻的,意思就是导弹自己寻找、跟踪直到最后击毁目标。它通常利用目标辐射、反射的某种能量,如红外线、电磁波、光辐射、声波等的信号,靠装置在导弹上的设备,探测、计算,形成指令,使导弹飞向目标。有主动式、半主动式和被动式之分,包括:

    雷达自动寻的制导,导弹头部装有雷达,向目标发射电磁波,根据目标回波,引导导弹飞行。

    红外线自动寻的制导,有红外导引头,利用目标辐射的红外线,转化为有规律变化的电能,通过电子线路整形放大,形成导引信号,把导弹引向目标。

    电视自动寻的制导,有一部电视摄像机,利用电子束扫描,把目标及背景的光像,转换成电信号,引导导弹跟踪目标。

    毫米波自动寻的制导,工作原理同雷达自动寻的制导一样,不同的是波长。雷达工作在微波波段,波长在10~l厘米,毫米波是指波长为10~1毫米的电磁波波段。它受气象和烟尘的影响小,除受大雨影响外,不受雾、云、雪、冰雹影响,毫米波一样可以穿透,有着“有限的全天候能力”。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架