科学未解之谜-数学之谜
首页 上一章 目录 下一章 书架
    古典难题的挑战——几何三大难题及其解决

    位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了二千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

    1.三大难题的提出

    实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。

    古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。

    漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6~前4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。

    三等分角问题:将任一个给定的角三等分。

    立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

    化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

    这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

    2.貌似简单其实难

    从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,二千多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

    其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?

    数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能,标准是什么,界限在哪里?可这依然是十分困难的问题。

    3.高斯的发现

    历史的车轮转到了17世纪,法国数学家笛卡尔创立了解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。

    最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥廷根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费马数,那么正P边形就可以用尺规作图法作出,否则不能作出。

    由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。

    高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。

    4.最后的胜利

    解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。

    标准有了,下面该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方积与三等分任意角不可能用尺规作图法解决,宣布了二千多年来,人类征服几何三大难题取得了重大胜利。

    二千多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执著追求的拗劲正是科学的精神。更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法。例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题,等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。

    特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近代抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一滴全面清楚的介绍。

    哥德巴赫猜想

    1742年6月7日,当时还是中学教师的哥德巴赫,写信给当时侨居俄国彼得堡的数学家欧拉一封信,问道:“是否任何不小于6的偶数,均可表为两个奇素数之和?”因为哥德巴赫喜欢搞拆数游戏。20几天后,欧拉复信写道:“任何大于6的偶数,都是两个奇素数之和。这一猜想,虽然我还不能证明它,但是我确信无疑地认为这是完全正确的定理。”这就是一直未被世人彻底解决的著名的哥德巴赫猜想,也称哥德巴赫一欧拉猜想。

    千古之谜——费尔马大定理

    现代数论的创始人、法国大数学家费尔马(1601—1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。

    一般地,每个大于2的幂不可能写成两个同次幂的和。”

    对数表由来之谜

    如果给你一道有关对数的题目,通过查对数表,你可以很快把它运算出来。如果不用对数表,运算起来就很复杂了。这个给我们带来很大方便的对数表是谁编出来的呢?最早的编表人是瑞士钟表技师标尔基,他为了减轻当时天文学家对于“天文数字”的计算量,在著名天文学家开普勒的鼓励下,从1603年到1611年,前后用了8年时间,硬是一个数一个数地计算,编制出了世界上第一个对数表。不过这个对数表比较粗糙,错误也多,因此没有流传开来。

    几乎与标尔基同时,苏格兰数学家纳伯尔选择更精确的底,用了20年时间,造出了一个精度比较高的对数表。

    制造对数表最大的困难是选择多大的底。

    随处可见的数字“5”

    “5”这个数在日常生活中到处可见,钞票面值有5元、5角、5分;秤杆上,表示5的地方刻有一颗星;在算盘上,一粒上珠代表5;正常情况下,人的每只手有5个手指,每只脚有5个足趾;不少的花,如梅花、桃花都有5个花瓣;海洋中的一种色彩斑斓的无脊椎动物海星,它的肢体有5个分叉,呈五角星状。

    总之,“5”这个数无所不在。当然数学本身不能没有它。

    在数学上,有而且只有5种正多面体——正四面体、正六面体(立方体)、正八面体、正十二面体与正二十面体。平面上的五个点惟一地确定一条圆锥曲线;5阶以下的有限群一定是可交换群;一般的二次、三次和四次代数方程都可以用根式求解,但一般的五次方程就无法用根式来求解。5还是一个素数,5和它前面的一个素数3相差2,这种差2的素数在数论中有个专门名词叫孪生素数。人们猜测孪生素数可能有无穷多,而3和5则是最小的一对孪生素数。

    前些年,美国数学家马丁·加德纳曾描述过一个有趣的人物——矩阵博士。

    这位博士是个美国人,他的妻子是日本人,但早已亡故只留下一个混血种的女儿伊娃。他们父女二人相依为命,博士常带着女儿漂洋过海,闯荡江湖,在世界各地都有他们的足迹。

    博士对数论、抽象代数有许多精辟之见。虽然他说的话乍一听似乎荒诞不经,可拿事实去验证他所说的离奇现象与规律时,却又发现博士的“预言”都是正确的。

    有一次,博士来到印度的加尔各答。他说古道今,大谈“无所不在的5”。

    博士指出,在印度的寺庙里,供奉着许多魔金刚,信仰这些金刚的教派之中心教义一共有5条,其中一条是所谓宇宙的永动轮回说,即认为宇宙经过5百亿年的不断膨胀后,又要经过5百亿年的不断收缩,直到变成一个黑洞,然后又开始下一轮的膨胀与收缩。如此周而复始,循环不已。降魔金刚手中,还拿着宇宙膨胀初期的“原始火球”呢?在这里,博士曾几次提到5这个数字。

    英国的向克斯曾把π的小数值算到707位,以前这被认为是一项了不起的工作。自从近代电子计算机发明以后,他的工作简直不算一回事了。现在求π值的记录一再被打破,最新的记录是100万位,这是由法国人计算出来的。有意思的是,矩阵博士在这项计算以前,就作了大胆的预言,他说第100方位数必定是个5,结果真是如此!这究竟是用什么办法知道的呢?博士却秘而不宣。

    循环往复的周期现象,在科技史上曾起过重大作用,门捷列夫发现元素周期表,就是突出的一例。下面请读者来看一下与5有关的有趣现象。

    请任选两个非0的实数,如π与76,并准备一个袖珍电子计算器。假定计算器数字长八位,那么,的八位数值是3.1415926。现在请把第上二数76加上1作为被除数,把第一个数。作为除数做一下除法,即:

    (76+1)÷3.415926=24.509861

    我们把显示在计算器上的24.509861称为第三数,然后再重复上述过程,把第三数加上1,把第二数作为除数,这就得到了第四位数:0.335656,依次类推,可得到第五数、第六数……

    也许读者会认为,这些数字都没有规律可循,照这样下去,真是“味同嚼蜡”。然而,当算到第六数时,你将会大吃一惊,原来第六数是3.1415931,略去这一数字后面二位因计算时四舍五入造成差异的小数,它竟和第一数的π。相等,π又回来了!如果你还不太相信,不妨再挑选一些整数,结果保证令人满意。我们可以得出结论,5是一个循环周期,第六数与第一数完全一样,第七数与第二数完全一样……要知道,这一个秘密最初也是矩阵博士想到的呢!

    矩阵博士是否真有其人,我们且不去计较,可是这神奇的、无所不在的5却不能不引起人们的极大兴趣,引诱人们去探索和研究。

    令人着迷的迷宫

    如今,英国在世界上领先的地方可能并不多了。但是,对于那些喜欢彻底迷失方向的人,它却是最好的:因为这个国家是集世界迷宫之大成的地方。从汉普顿宫那造型优美、闻名历史的迷宫到朗利特闪闪发光的镜宫,或者散布在农田里、由庄稼形成的季节性迷宫:我们从未面临着这么多“走不出去”的路径。

    自20世纪80年代以来,英国的迷宫数量已增加了两倍,达到一百二十多个,每年有成千上万的游客前往参观。世界公认的迷宫设计泰斗阿德里安·费希尔说:“这是迷宫的黄金时代。”费希尔在17个国家建造了二百多座迷宫。

    在泽西海洋公园,费希尔建造了全世界最大的水上迷宫。迷宫的墙壁由高高低低的喷泉口构成,这些喷泉口形成了时隐时现的水路。他还4次创下建起世界最大迷宫的记录,其中那座巨大的“玉米迷宫”覆盖了数英亩的美国农田。

    在费希尔看来,自他从1979年开始迷宫设计以后,是什么东西吸引了2000万人前往他的创造中探险呢?他说:“我觉得,对个人来说,那是指示秘密的兴奋。对于家庭来说,有机会共同完成一件事情非常难得——像迷宫这样对各个年龄段的人都有吸引力的东西并不多。”

    今天的迷宫设计者在科学上的计算是如此准确:如果他们说,你需要半小时才能走出去,那么走出迷宫所需的时间就是半小时。

    具有讽刺意味的是,今天的迷宫设计者面临着的最大挑战之一就是让这些挑战具有足够的难度。以古老的迷宫建造艺术中的最新创造因特网迷宫为例,这些刊登在万维网上的迷宫可能看起来很容易解决:毕竟你能看出它们的布局,知道布局就可以进入传统迷宫的中心并走出去。费希尔说:“如果走出一个现实的迷宫需要半小时,在网上只需几分钟就够了。所以,我们得找到让迷宫更富挑战性的新规则。”

    但是,费希尔知道,游戏者最终总会胜利。他说:“设计迷宫就像是设计者和使用者在下棋;但在这盘棋中,总是设计者率先走出所有的步骤。我知道自己总会输,秘密在于如何输得气派。”

    关于忒修斯的古希腊故事讲述了传说中的弥诺斯王在克里特岛上建造迷宫的经过。在这座由伟大的工程师代达罗斯设计的迷宫中心关着半人半牛的怪物弥诺陶洛斯,弥诺斯定期用希腊犯人喂它。后来,希腊英雄忒修斯杀死了弥诺陶洛斯,并且循着弥诺斯王的女儿阿里亚德妮给他的绳索逃出了迷宫。

    克里特岛发掘出的古代钱币上的确刻有像是迷宫的图案。一些古代历史学家断言,他们知道这个神话中迷宫的下落:它在埃及国王阿门内姆哈特三世统治的王国中。阿门内姆哈特三世于公元前1800年左右在位。

    根据当时的记载,阿门内姆哈特迷宫是古代的奇迹之一。希腊历史学家希罗多德曾在公元前450年左右探访过那里。他说,这个迷宫由12座带顶的院落构成,所有院落都有通道连接,形成了3000个独立的“室”。他说,建造这座迷宫使用的人力和财力“超过了希腊所有建筑的总和”。后来的参观者说,一旦进入迷宫,如果没有向导,根本无望逃出,因为许多通道是一片漆黑。

    1888年,伟大的英国考古学家皮特里发现了埃及中部美利斯湖的阿门内姆哈特迷宫。这座迷宫的神奇程度与希罗多德的描述分毫不差。根据皮特里的测量,迷宫长300米,宽250米。

    在那些神秘的通道深处,皮特里发现了伟大的国王阿门内姆哈特本人的坟墓。但是,迷宫的错综复杂没能挡住盗墓者。阿门内姆哈特最后的安息之所还是遭到了破坏。皮特里认为,盗窃一定是“内部人干的”:如果不是知情人泄露了迷宫的地图,盗墓者不可能成功。

    罗马人曾在马赛克中使用迷宫图案。在欧洲中世纪早期的黑暗时代,人们认为刻在地上的迷宫具有魔力。中世纪的基督教堂来用迷宫的主题,把这一主题刻在大教堂的墙壁上。那些没有勇气经过千山万水前往圣地的信徒们常常在迷宫里转来转去,以惩罚自己的信仰不坚。

    把迷宫用作娱乐似乎起源于文艺复兴时期的意大利,并在都铎王朝时期被英格兰富有的私房主沿袭下来。著名的汉普顿宫树篱迷宫(全世界同类迷宫中最古老的一个),就是1689年至1694年间由英王威廉三世种下的。

    维多利亚时代,人们在公园里建造了许多迷宫,为公众提供娱乐;私人房产附近也出现了更多的迷宫:其中特别引人入胜的当属剑桥大学的教学家威廉·劳斯·鲍尔在自家花园里修建的迷宫。

    如今,在数学界,劳斯·鲍尔以《数学游戏和试验》一书最为著名。在这部最初于1892年出版的书里,他对迷宫的问题进行了探索。

    迷宫(以及如何走出迷宫)背后的数学理论是由伟大的瑞士数学家莱昂哈德·奥伊勒在1736年创造的:当时他正试图解决普鲁士小镇柯尼希山的居民发明的一个表面看来非常无聊的谜题。这座城镇有7座在不同地点横跨普雷格尔河的小桥。镇上有人提出一个难题:

    谁能在镇上找到一条路,这条路经过所有7座桥,但每座桥只走一次?

    有人怀疑这无法实现。但是,奥伊勒证明了这种命题是不可能的,并在证明的过程中开创了一个崭新的数学领域。这就是后来被发现具有许多实际应用的图论。

    劳斯·鲍尔随后在书中探讨了迷宫图论的蕴涵,首次把走出迷宫的数学原理展现在公众面前。

    对于许多迷宫来说,一条非常简单的规则能够把你带到中心点并重新返回:只需把一只手放在迷宫的墙壁上,一直向前走,不要把手拿下来就行了。

    这种方法适用于汉普顿宫的树篱迷宫、肯特的赫弗古堡等许多历史上的迷宫。但是,今天的迷宫设计者完全了解“手放墙上”的把戏以及如何挫败这种方法。要走出阿德里安·费希尔在牛津郡布莱纳姆宫建造的迷宫,你很可能会长久地陷在那些树篱中:这座迷宫中的某些交叉处并不符合那条规律。

    但是,有一条规则却适用于所有迷宫。这条规律最初是19世纪的法国数学家特雷莫发明的:走到一个新的交叉路口时,任意选取一条路,只有在这条路带你来到已经走过的路口或死胡同时才回头。如果你经由一条走过的路来到一个见过的路口,尽可能选择一条新路。但是,无论如何,不能在同一条路走两次以上。如果你能识路并记路,效果会很好。

    特雷莫的方法能把你带出任何迷宫:尽管未必是通过最短的路线。

    奇妙的巧合

    美国康涅狄格州的商人乔奇·D·伯力森在南方旅行,经过肯塔基州路易斯维尔城时,他改变原定计划,行程中途下车参观一下这个以前从未来到的陌生的城市。他在布隆饭店307房间住了不久,店员送来一封信,信封上写着:“307房间,乔奇·D·伯力森先生收”。这当然是不可能寄给这位商人的。原来在此前,这个房间住着一个来自加拿大蒙特利尔的同姓同名的乔奇·D·伯力森。

    1949年,宾夕法尼亚州契斯特城一男子被指控“流浪罪”遭逮捕。在法庭审理时,被告竭力申辩,说他并非流浪,他的住址是麦克尔弗因街714号。法官当即指出:“这个地方,9天前我刚从那儿搬出。”

    人们往往对这些巧遇惊叹不已,而又不知其所以然。哲学家告诉我们:偶然中蕴藏着必然,偶然事件中有着必然的规律在支配。对于数学家来说,巧合并不神秘,有些事情是可以用统计概率的方法来进行预测的。

    数学家认为,在地球上50亿居民中每天发生着无可计量的交往、联系、影响与作用,即使根本没有巧合存在,大多数惊人的事也会发生。比如,你与22个陌生人一起参加宴会,其中可能有一人与你生日一样。因为在一个随意挑选的23人组成的小组中,至少有2人同一天生日的可能性超越50%。

    《生活》杂志曾报道过这样一件事:有15人预定1950年3月1日7点15分去内布拉斯加州皮塔里斯教堂进行唱诗班排练。结果,每个人都由于种种原因而迟到;车子坏了,因为听无线电节目而不忍离开,衣服来不及烫好,正好有客人来访,等等。所以没有一个人在预定时间到达。然而,教堂却在7点25分因意外事故而炸毁。这些唱诗班的人都为之庆幸,心想这也许是神的安排吧!《好运气》一书的作者根据概率参数推测,这种巧合发生的可能性是1%。

    这些巧合是那样的变幻莫测,令人难以捉摸。例如:林肯总统与肯尼迪总统遭暗杀时的相同情况能用概率方法推测吗?这两位总统有许多相似的巧合:两人当选总统时间在同一周,只不过相差100年而已;两人都深深卷入了黑人公民权的纷争之中;两人都是在夫人陪同下又均是在星期五遭暗杀;在任职居住白宫期间,两人都在白宫死去了一个儿子;林肯在福特剧院遭枪杀,肯尼迪在福特汽车公司制造的林肯牌总统专用敞篷车上遭枪杀;两人死后都由各自的副总统继承他们的总统职务,而这两位副总统的名字又都叫约翰逊;他们的年龄又正好相差100岁;恰好又与两位总统的当选时日差数相同。

    这类有许多特异的变量决定的巧合,给一些不相信概率理论能解释一切巧合的科学家们提供了推出新理论的根据。这个领域的先驱是瑞士的精神病学家克尔·琼,他收集了他一生中遇到过的许多稀罕的巧合事件。他在1952年的一篇论文中宣称:实际生活中的巧合事件,在比概率理论能预测的更大范围与数量上频繁而广泛地发生着。因此,这儿似乎存在着一种还不为人知的充当着一种普遍规律的力量在起着作用。他为此杜撰了一个新名词——共时性,来描写那类在不期而遇的联系中发生的那些本来并无关系事件的巧合现象。

    琼特别醉心于研究那类丢失或被盗走的东西是从哪一种途径中回到失主的手中的。比如,他曾引证过这么一个例子:1914年,德国有位母亲为她的小儿子照了一张像,送法国斯特拉斯堡市一家照相店洗印。不久第一次世界大战爆发,她流落外地。两年后,她在距斯特拉斯堡100英里的德国法兰克福市买了一张底片为她刚生下的女婴拍照,当这张底片洗印时出现了两个影像,一个是她的女儿,而另一个是她的儿子。经过不可思议的命运的曲折的变化,她两年前照的那张底片由于没有做上“已拍”的标记,结果又作为未拍过的底片卖到了她的手中。

    在研究对巧合的新的解释原理的过程中,物理学家们提供了胜过概率理论的新思索。早在1935年就已证明,两只逊原子(粒子)只要相互作用一次,就可以使这每个粒子随后运动数十年,并分离数光年之遥,对这些奇怪的现象,爱因斯坦和他的合作者把它称为EPR。

    在对上述这个现象研究了数十年之后,物理学家大维·鲍姆认为:人也许像粒子一样的相互作用着,他们的头脑在同一时间不谋而合地有可能产生同样的想法、见解、感受。

    当然,从理论探索到证明巧合事件不是偶然发生的,这里有一段很长的路要走。就如纵横填字字谜、魔方、魔棍等使人能知其然而难知其所以然一样,关于巧合的规律性的争论在科学家中还要进行下去,而事实上,巧合的事件不管你怎么解释,还在继续不断地发生着。

    神秘的“0”之谜

    在公元前约2000年至1500年左右,最古老的印度文献中已有“0”这个符号的应用,“0”在印度表示空的位置。后来这个数字从印度传人阿拉伯,意思仍然表示空位。

    我国古代没有“0”这个符号,最初都用“不写”或“空位”来作解决的方法。《旧唐书》和《宋史》在讲论到历法时,都用“空”字来表示天文数据的空位。南宋时《律吕新书》把118098记作:“十一万八千口九十八”,可见当时是用口表示“0”,后来为了贪图书写时方便将口顺笔改成为“0”形,与印度原先的“0”意义相通。

    0不能做除数,我们可以从下面两种情况来谈点道理:

    一种情况,如果被除数不是零,除数是零时,例如9÷0=?根据乘、除法的关系,就是说要找一个数,使它与0相乘等于被除数9,但是任何数与0相乘都等于0,而绝不会等于9。

    另一种情况是被除数和除数都是零,例如0÷0=?就是说要找一个数,使它与0相乘等于0,因为零与任何数相乘都得零,所以要找的数不止一个,可以是任何数,那么0÷0的商不能得到一个确定的数,这是违反了四则运算结果的惟一性,因此零除以零是没有意义的。根据上述两种情况都可以看出零是不能做除数的。

    当然,我们还可以从等分除法的意义上看,除数是0是不能存在的。如有12本书,分给0个学生,平均每个学生分得几本,既然没有学生分这些书,就不可能求出每个学生分得几本书,所以0是不能做除数的。

    最大数和最小数之谜

    (1)三个1,不另加任何数学运算符号,能写成的最大的数是什么?能写成的最小的数是什么?

    (2)四个1,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

    (3)三个2,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

    (4)三个4,不另加任何数学运算符号,能写成的最大的数和最小的数是什么?

    你在回答这些问题时会发现,它们都是需要仔细想一想才能正确回答的问题。

    (1)很明显,111是最大数的,1(上标11)=1是最小数。

    (2)如果你从(1)的经验出发,以为1111是最大数,就错了。这里最大的数是11(上标11)。事实上,11(上标3)=1331>1111,而11(上标11)比1111更要大得多。最小的数当然还是1(上标111)=1。

    (3)不要以为222是最大数;相反,它却是最小的数。这里,最大的数是2(上标22)=4194304。它比222或22(上标2)都要大得多。

    (4)你根据(3)可能以为444是最大的数,这又错了。这里的最大的数却是4(上标44)。因为4(上标44)=4(上标256),显然,4(上标256)>>4(上标44)(“>>”表示远远大于)。最小的数是444。

    现在,你能不另加任何运算符号,写出三个3,三个5,三个6……的最大数和最小数了吗?

    神秘的魔术数之谜

    1986年全国初中数学竞赛题第一题第3小题提到魔术数,原题是:将自然数N接写在每一个自然数的右面,如果得到的新数都能被N整除,那么N称为魔术数,在小于130的自然数中,魔术数的个数是。

    乍看起来,问题较棘手,但认真分析,并不难解决。

    大家在理解魔术数定义时就注意这几个字:“接写”、“每一个”(即任何一个),“都能”。

    例如,把偶数2接写在任何一个自然数右面(如写在35右面得新数352),得到的新数都是偶数,都能被2整除,所以2是魔术数。

    分酒之谜

    今有两只8两装的酒瓶装满了酒。另外还有一只可装3两酒的空瓶。现要将酒倒入四只空杯,每只都倒入4两酒,倒入空杯的酒不可以再倒出来。应如何倒法?

    利用空瓶倒出3两酒是很容易的,关键在于怎样想法取出1两和2两酒(因为3+1=4,2+2=4)。

    为此,可按下述步骤进行(参见后面的表):

    (1)将A瓶中的酒,利用C瓶连续倒两次,一次倒入D杯,一次留在C瓶内。

    (2)这时A瓶中还余下2两酒,将它倒入E杯内。

    (3)将C瓶中的3两酒倒回A瓶。

    (4)将B瓶中的酒,利用C瓶连续倒两次,其中5两倒入A瓶(装满),C瓶内还余下1两。

    (5)将C瓶中的1两酒倒入D杯;再将B瓶中的2两酒倒入C瓶。

    (6)将A瓶中的酒补满C瓶;C瓶倒入B瓶,并再连倒两次。这时B瓶装满,A瓶中余下1两,C瓶中也余下1两。

    (7)将A瓶和C瓶中的1两酒分别倒入F杯和G杯。

    (8)至此,只要再利用C瓶,将B瓶中的酒各倒一次至F杯和G杯;最后再将余下的2两酒倒入E杯。酒就分好了。

    A    B    C    D    E    F    G

    (8两)(8两)(3两)(空杯)(空杯)(空杯)(空杯)

    (1)    2    8    3    3    0    0    0

    (2)    0    8    3    3    2    0    0

    (3)    3    8    0    3    2    0    0

    (4)    8    2    1    3    2    0    0

    (5)    8    0    2    4    2    0    0

    (6)    1    8    1    4    2    0    0

    (7)    0    8    0    4    2    1    1

    (8)    0    0    0    4    4    4    4

    黄金分割之谜

    在数学宝库中,有一颗光灿灿的明珠,被誉为“黄金分割”。在我国现行的初中几何课本中,有十几处讲到了“黄金分割”,它很值得我们好好学习和研究。

    中外比

    在已知线段AB上有一点P。如果BP:AP=1:1,那么P将二等分AB。即P为AB的中点。如果BP:AP=1:2,P将三等分AB,即P为AB的一个三等分点。如果p将AB分为大小两段,使小段与大段之比恰好等于大段与全长之比,即BP:AP=AP:AB,那么就叫P点分线段AB成“中外比”。著名画家达·芬奇把人体许多部位之比画成中外比,显得特别和谐美观,他称中外比为“黄金分割”。

    计算圆周率的历程

    人类在很早以前,从生活和生产的实践中,就发现了“一个圆的周长与其直径之比是一个定数”。这个定数被后世称为圆周率,大数学家欧拉在1737年采用符号“π”表示圆周率.以后才普遍使用。从古到今,人类为求出这个π值,不知走过多么漫长而曲折的道路。在数学史上,π值的精确度,曾代表着一个国家的数学水平。我们中国人,在求π值的精确度上,曾创造过辉煌,代表了人类那段时期数学的最高成就。

    1.早期的圆周率

    2.割圆术求π值

    继阿基米德之后,约在公元150年,希腊天文学家托勒密求得圆周率=3.141666。晚于他的我国天文学家王蕃于公元255年,用勾股法求得圆周率=3.1555。

    公元263年,魏晋时期的刘徽在《九章算术法》中,首创周“割圆术”去求圆周率。即通过不断倍增圆内接正多边形的边数来求圆周长的方法。刘徽从计算国内接正六边形开始(此时边长等于半径),再计算正12边形周长,即将圆周12等分,进而正24边形,正48边形,直算到正192边形,即将圆周192等分,用其周长去近似表示国的周长。并说:“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体,而无所失矣。”这就是说,当圆内接正多边形边数无限增加时,这个正多边形的周长,就无限逼近圆的周长。这种“无限逼近”的思维方法正是近代数学基础的极限思维方式。这种极限思维方式,虽早在春秋时代庄子的书中就有了,但将这种极限思维用于解决数学问题,刘徽乃第一人。

    刘徽计算圆内按正192边形求圆周率,可不是简单的事。当时计算工具还十分落后,要计算是用筹算,得拿一捆细的棍棒(称为算筹)摆弄半天才算得一个数。算圆内接正多边形的边数每翻一番,至少要进行7次运算。其中除了加减运算还要计算2次乘方和2次开方。刘徽算到正192边形,边数翻了5番,算出的圆周率为3.141024与3.142704之间。可想而知,用筹算进行超过六位小数的乘方运算及开方运算,这需要多么熟练的运算技巧,需要多么顽强的毅力。刘徽算出的圆周率,虽然精确度只是3.14,但他开创的“割圆术”,以及对许多数学问题独创性的见解,使他受到世人的赞誉。

    3.祖冲之创造的世界纪录

    公元5世纪中国南北朝时期,祖冲之“专政数术,搜练古今,博采沉奥”,成为我国古代最伟大的数学家、天文学家、机械学家。

    祖冲之祖籍范阳遒(今河北省沫水县北)人,公元429年生于江南。他祖上几代人都研究历法,受家庭熏陶,祖冲之自幼便对数学和天文产生了浓厚的兴趣。他年轻时胸怀雄心壮志,学习非常刻苦勤奋,阅读和研究了有关天文、数学的大量著作,同时又注重实际观测。经过长期钻研磨练,终于成为杰出的学者。

    祖冲之青年时代曾在刘宋政府的华林省从事研究工作,后升任南徐州(今镇江)从事史,继又赴建康(今南京)任公府参军,渴者什射(朝廷礼书官),长水校尉等职。祖冲之就在这“江南佳丽地,金陵帝王州”度过了他一生的主要时光。

    祖冲之对世界最大的贡献就是对圆周率的研究。据《隋书·律历志》记载,祖冲之求得“以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,助教三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率:圆径一百十三,圆周三百五十五;约率:圆径七圆周二十二。”这就是说,祖冲之求出的结果为:

    3.1415926<圆周率<3.1415927

    密率:355/113,约率:22/7这个精确到小数点后七位的圆周率,在当时是非常了不起的成就。这个世界级的精确度,由祖冲之创造,并由他保持了一千年,直到15世纪,才由中亚的阿尔·卡希打破,得到精确到小数16位的值。

    在筹算的时代,祖冲之是怎样求出精确到7位小数的圆周率值呢?说来真是遗憾。祖冲之写了一本非常优秀的数学著作《缀术》,其中包括了对国周率的研究及成果,以及其他的丰富内容,该书曾被唐国子监和朝鲜、日本用做算术课本。但隋唐时“学官莫能究其深奥,是故废而不理”。这就是说,在隋唐那个重文轻理的时代,当官的多不懂数学,祖冲之著的《馈术》,他们根本就看不懂,因此当废物弃之。到了北宋的1084年刻印各种算经时就找不见《缀术》,失传了。这不能不说是世界数学史上的重大损失。因此,祖冲之到底怎样算出圆周率值的,也就成了千古之谜。

    后世数学家也多有研究这千古之谜的,总想探求祖冲之求圆周率的方法。若祖冲之是在前人成就的基础上,用“割圆术”去求圆周率,那么从圆内按正六边形开始,要将其边数翻11番,算到圆内接正12288边形,才能得到这样精确度的值。若用密率355/133作为圆周率,计算一个直径10公里的圆周长,结果只比真值还不大到3毫米。从这我们可以看到,祖冲之在求圆周率时的艰辛,以及所求圆周率的精确程度。我国自汉代便存在着“连分数术”。近代多有人认为祖冲之是用此法求的圆周率。但当时只能用筹算去算数,按精确到小数点7位去计算,那么,小数至少要保留12位,而12位小数的一次乘方和开方,就决非易事。无论他采用何种方法,在当时的条件下,祖冲之能算出精确到七位小数的圆周率是多么的不容易。正是这不容易,才构成了祖冲之的伟大,才使中国的数学在全世界独领风骚1000年。

    祖冲之成为中华民族的骄傲,人们将它的“密率”称为“祖率”。人类为了纪念这位数学家,将月球背面发现的一个环形山谷,命名为“祖冲之山谷”。

    4.π值的近代计算

    祖冲之之后的许多数学家,也对圆周率进行过研究,但都不如所他求的值精确,直到一千年后,由中亚的阿尔·卡希得到精确度为小数16位的圆周率。而此时已经有阿拉伯数字进行笔算。17世纪,瓦里斯给出了圆周率的有理式或极限形式。范瑟朗给出精确到35位小数的圆周率。1853年,番克斯计算π值,精确度达到小数607对位。

    电子计算机出现以后,π的计算工作有了更大进展。1949年美国赖脱威逊用ENIAE计算机工作70小时求得π的2034位小数值。1973两位法国女数学家利用7600CDC型电子计算机得到100万位小数的π值。1983年计算到16777216位小数。现在有人已计算到上亿位,甚至10亿位。

    在π的近似值的“马拉松”式的计算竞赛中,一直没有发现任何循环的现象。希望π是有理数的期望渐渐暗淡了,直到1761年德国数学家兰伯特征明了π是无理数。1882年,德国数学家林德曼借助于e(上标iπ)=-1证明了π是一个超越数。

    为了实际计算的需要,这是π值计算的初衷,因为许多场合涉及到圆周率。但是,计算π的意义并不是单纯为了实际计算的需要,就近代科学所需要的精密度来说,即使需要几十亿分之一的精确度,也只不过需要用到π的10位小数就足够了。而关于π值多位数的计算却发现了它有许多迷人的性质。π的理论和性质可以有各种各样,它是一个深深的丰富的宝地,几千年来一直引起人们的极大兴趣,并且现在和将来还有人在不断地研究。

    平方数之谜

    一般,小学生就知道平方数,2(上标2)=4,3(上标2)=9,非常简单。可是现在许多与平方数有关的问题还在困扰着数学家。

    17世纪法国数学家费马,本人原是律师,研究数学只是业余爱好。可是他的这种业余爱好,使他成为17世纪欧洲最重要的数学家之一。费马还有一个特点,他对数学规律的发现,大多数都是以猜想的形式提出的。也就是说,他只管提出结论,不管证明。

    费马提出许多有关平方数的问题,下面介绍几个:

    (1)1640年12月25田费马在给神父梅森的信中提出:一个形如4n+1的素数都可以表示成两个平方数之和。比如,5=4+1,13=9+4,17=16+1,29=25+4等等。

    当然,费马对这个结果没有给出证明。100多年以后,瑞士数学家欧拉才结出了证明,并进一步证明了这种表达是惟一的。

    (2)一个形如4n+1的素数,把它作为整数边直角三角形的斜边的机会只有一次。比如5,把它作为斜边,只有5(上标2)=3(上标2)+4(上标2)这样一种可能。如果把4n+1的素数平方,那么它作为斜边的机会就增加为两次;把它3次方之后就有3次等等。比如5,5的平方是25,而25(上标2)=15(上标2)+20(上标2)=7(上标2)+24(上标2);5的立方是125,而125(上标2)=75(上标2)+100(上标2)=35(上标2)+120(上标2)=44(上标2)+117(上标2)。这个问题后来也得到了解决。

    (3)整数边直角三角形的面积不能是一个平方数。比如边长为3、4、5的直角三角形,它的面积是6个平方单位,而6不是一个平方数。

    这个问题由法国数学家拉格朗日证明是对的。

    但是有关平方数的问题很多,并不是都解决了。1770年英国数学家华林推测:每一个正整数都可以表示成4个平方数之和,9个3次方数之和,19个4次方数之和。

    华林推测的第一部分,即每一个正整数都可以表示成4个平方数之和,提出不久被法国数学家拉格朗日证明了。

    按照华林的想法,上面推测可以推广到更一般的形式:

    对每个自然数是κ>1,存在一个常数S(κ),使每一个自然数可以表示为至多:S(κ)个(自然数)的κ次方的和。

    比如,k=2,s(κ)=4,即对手每一个自然数都可以表示为至多4个2次方的和;κ=4,s(4)=19,意思是对于每一个自然数都可以表示为至多19个4次方的和。

    这个问题的证明十分困难,使得数学家不知从何处下手。经过了很长时间的探索,1909年,德国著名数学家希尔伯特成功地证明了这个问题。英国数学家哈代称赞希尔伯特的工作是“现代数论的一座里程碑”。

    但是,华林问题并没有全部解决。希尔伯特只是证明了:S(κ)的存在性,并没有给出确定S(κ)最小值的方法和数值。我们把s(κ)的最小值记为g(κ),按照华林的猜测,g(2)=4,g(3)=9,g(4)=19。

    华林问题还没有完全解决,有人又从另一方面提出新的问题。保罗·图兰提出,什么样的正整数可以表示成两两互质的4个整数的平方和?他之所以这样提问题,是因为他确实发现了有不能表示的正整数。比如,他证明了形如8n的正整数8、16、32等等就不能;他又证明了形如6n+5的数11、17、23等等也不能。那么,究竟哪些数能表示呢?这个问题还在探讨中。

    保罗·图兰还猜测,任何一个正整数都可以表示成两两互质的整数的平方和,其个数最多是5个。但是对于足够大的所有整数,能表示成恰好5个两两互质的平方数之和吗?至今也没得到肯定的证明。

    华林推测,每一个正整数是9个立方数之和。有人嫌9个太多,提出每一个正整数能否表示成4个立方数之和?研究的结果表明,对于所有的正整数是做不到的。可是,除了形如9n±4的数以外,其他的数都可以做到。

    有人又提出:每一个整数能否表示成4个立方数之和,并且其中有两个是一样的?也就是说,每一个整数能表示成x(上标3)+y(上标3)+2z(上标3)吗?这个问题对于许多数都没有解决,比如76、148、183、230、253等都不知道能否表示。

    看来,这一个个“不知道”正等待着你来回答。

    孪生质数之谜

    一胎所生的哥俩叫孪生兄弟。你可知道,质数也有孪生的。数学上把相差为2的两个质数叫“孪生质数”或“双生质数”。

    孪生质数并不少见,3和5,5和7,11和13,17和19,25和31等等都是孪生质数,再大一点的有101和103,1116957和10016959,还有1000000007和1000000009。数学家做过统计:

    小于100000的自然数中有1224对孪生质数;

    小于1000000的自然数中有8164对孪生质数;

    小于33000000的自然数中有152892对孪生质数。

    现在利用电子计算机找到的孪生质数已经是“天文数字”了,比如1159142985×2(上标2304)+1和1159142985×2(上标2304)-1。孪生质数会不会有无穷多对呢?这个问题吸引了许多人去研究,但至今没有解决。早在20世纪初,德国数学家兰道就推测孪生质数有无穷多对。许多事实也都支持兰道的猜想,可是一直就证明不出来。1919年,数学家布隆想出一个“妙招”,他去求所有孪生质数3和5、5和7、11和13……的倒数和,设这个和为B,有:

    B=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+……

    布隆想,如果能证明B比任何数都大,也就证明了孪生质数有无穷多对!这确实是一个很巧的方法。遗憾的是事与愿违,布隆证了半天,却证明出B一定是个有限数。看来布隆的道路走不通。后来人们就把B叫做“布隆常数”,并算出B=1.90216054……

    布隆证明“孪生质数有无穷多对”虽然失败了,但他却证明了另一个有趣的结论:对于任一个整数m,都可以找到m个相邻的质数,其中没有孪生质数。

    “孪生质数有无穷多对”这个猜想至今仍是一个未解之谜,目前最好的结果是我国数学家陈景润得到的,他于1966年证明了:有无穷多个质数P,能使P+2最多含有两个质数因子。

    证明不了孪生质数是否有无穷多对,数学家就转而“攻击”另一个问题:孪生质数的分布情况。他们发现在1000以内有35对孪生质数;在10000以内有205对;在1亿以内有440312对。看来还真不算少。但是,孪生质数分布的一般规律至今还没有找到!

    从孪生质数数学家又想到三生质数。如果三个质数A、B、C,其中B比A多2,而C又比B多4,那么质数A、B、C就叫做三生质数。比如5、7、11;11、13、17;17、19、23;101、103、107;10014491、10014493、10014497都是三生质数组。

    三生质数组会不会有无穷多组呢?和孪生质数一样,这个问题至今也仍然是一个谜。

    素数定理之谜

    从乘法运算来看,素数应当是最简单的、最基本的。可是直到现在人们对于素数分布的规律仍然知之甚少,在这个领域内充满着问题与猜测。岁月流逝,问题依然,素数似乎是永恒的谜。其中素数定理之谜,就更是这一问题中的核心问题。

    这里用π(χ)表示不超过(正实数)X的素数的个数,例如

    π(10.5)=4不超过10.5的素数有4个:2,3,5,7。

    当x趋于无穷时,π(x)也趋于无穷。但是π(x),也就是不超过x的素数个数大概有多大呢?它与x的大小有怎样的关系?这都是很难的问题,也是一个很重要的问题,是素数分布理论的中心问题。

    1881年,英国数学家西尔维斯特发表了悲观的评论说:“我们或许要等待世界上产生这样一个人,他的智慧与洞察力像契贝谢夫一样,证明自己超人一等。”

    当他说这段话时,他并不知道解决这个问题的数学家阿达玛等人已经诞生。他也没有注意到二十多年以前,也就是1859年,法国卓越的数学家黎曼已经在一篇文章中提供了解决这个问题的钥匙。

    1896年,法国数学家阿达玛与德·拉·瓦利普松同时、独立地证明了素数定理。他们的证明都利用了黎曼1859年的那篇论文中的思想,利用了复变函数的理论。

    又过了五十多年,挪威数学家塞尔贝格与匈牙利数学家厄尔多斯在1948年找到了不利用复变函数理论的“初等证明”。

    除了素数定理还有待探索之外,(1)中余项R的估计也是一个很难的问题,有不少人在研究它。

    魅力无穷的完全数之谜

    公元前3世纪时,古希腊数学家对数字情有独钟。他们在对数的因数分解中,发现了引起奇妙的性质,如有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。

    1.发现完全教

    研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6,他十分感兴趣地说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”

    古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。

    约公元前300年,几何大师欧几里得在他的巨著《几何原本》第九章最后一个命题首次给出了录找完全数的方法,被誉为欧几里得定理:“如果2“-1是一个素数,那么自然数2(上标2n-1)(2(上标n)-1)一定是一个完全数。”并给出了证明。

    公元1世纪,毕达哥拉斯学派成员、古希腊著名数学家尼可马修斯在他的数论专著《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。他还将自然数划分为三类:富裕数、不足数和完全数,其意义分别是小于、大于和等于所有真因数之和。

    2.神秘的第五个完全数

    完全数在古希腊诞生后,吸引着众多数家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。

    后来,由于欧洲不断进行战争希腊、罗马科学逐渐衰退。一些优秀的科学家带着他们的成果和智慧纷纷逃到阿拉伯、印度、意大利等国,从此,希腊、罗马文明一蹶不振。

    直到1202年才出现一线曙光。意大利的斐波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集的数学,写出了名著《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找安全数的有效法则,可惜没有人共鸣,成为过眼烟云。

    光阴似箭,1460年,还当人们迷惘之际,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑不解了。

    3.不平凡的研究历程

    在无名氏成果鼓励下,15至19世纪是研究完数不平凡的日子,其中17世纪出现了小高潮。

    16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位著名数学家。他研究发现:当n=2和n=3至39的奇数时,2(上标n)-1(2(上标n)-1)是完全数。

    17世纪“神数术”大师庞格斯在一本洋洋700页的巨著《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。

    1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数2(上标16)(2(上标17)-1)和2(上标18)(2(上标19)-1),但他又错误地认为2(上标22)(2(上标23))-1、2(上标28)(2(上标29)-1)和2(上标36)(2(上标37)-1)也是完全数。这三个数后来被大数家费马和欧拉否定了。

    1644年,法国神甫兼大数家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2(上标n-1)(2(上标n)-1)是完全数,同时又增加了n=67,127和257。

    在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是著名的“梅森猜测”

    “梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱布尼兹也认为是对的。他们低估了完全数的难度。

    1730年,被称为世界四大数家雄狮之一的欧拉,时年23岁,正值风华正茂。他出手不凡,给出了一个出色的定理:“每一个偶完全数都是形如2(上标n-1)(2(上标n)-1)的自然数,其中n是素数,2(上标n)-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆理。有了欧几里得与欧拉两个互逆定理,公式2(上标n-1)(2n-1)成为判断一个偶数是不是完全数的充要条件了。

    欧拉研究“梅森猜想”后指出:我冒险断言:每一个小于50的素数,甚至小于100的素数,使2(上标n-1)(2(上标n)-1)是完全数的仅有n取3,5,7,13,17,19,31,41,47,我以一个优美的定理出发得到了这些结果,我自信它们具有真实性。”1772年,欧拉因过度拼命研究双目已经失明了,但他仍未停止研究,他在致瑞士数家丹尼尔的一封信中说:“我已经心算证明n=31时2(上标20)(2(上标31)-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。

    欧拉定理和他发现的第8个完全数的方法。使完全数的研究发生了深刻变化,可是,人们仍不能彻底解决“梅森猜测”。

    1876年法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新办法给研究完全数者带来一机,同时也动摇了“梅森猜测”。因数家借助他的方法发现猜测中n=67,n=257时不是完全数。

    在以后1883—1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。

    至此,人们前赴后继,不断另辟新路径,创造新方法,用笔算纸录,耗时两千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2(上标n-1)(2(上标n)-1)是完全数。

    笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”

    历史证明了他的预言。

    从1992年开始,人们借助高性能计算机发现完全数,至1986年才找到18个,多么可怜!

    4.等待揭穿之谜

    迄今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测:存不存在奇数完全数。

    1633年11月,法国数学家笛卡尔结梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ(上标2)的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。这成为世界数论又一大难题。

    虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。

    有多大呢?远的不说,当代大数学家奥尔检查过要10(上标18)以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于10(上标36),这是一个37位数;1972年,有人证明它必大于10(上标50),1982年,有人证明,它必须大于10(上标120);……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。

    对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!

    关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个!存在不存在奇完全数?

    人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1;对于496有,4+9+6。19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?

    以上这些难题,与其他数学难题一样,有待人们去攻克。尽管我们现在还看不到完全数的实际用处,但它反映了自然数的某些基本规律。探索自然规律,揭开科学上的未知之谜,正是科学追求的目标。

    经典趣昧名题

    1.奇妙而重要的数列

    由于研究兔子繁殖问题,引出了一个极为奇妙而重要的数列。

    有位养兔专业户想知道兔子繁殖的规律,于是他围了一个栅栏把一对刚出生的小兔子关在里面。已知一对小兔子出生后两个月就开始生兔子,以后则每月可再生一对,假如不发生伤亡现象,满一年时,栅栏内有几对兔子呢?

    2.《镜花缘》里的数学难题

    著名小说《镜花缘》里有段故事:

    元宵节,宗伯府的女主人卞宝云想考一考精通筹算的才女米兰芬,请她算一算楼房中灯的数目。她告诉米兰芬,楼上的灯有两种,一种上做三个大球,下缀六个小球,计大小球九个为一灯;另一种上做三个大球,下缀18个小球,计大小球21个为一灯。大灯球共396个,小灯球共1440个。楼下的灯也分两种,一种一个大球,下缀两个小球;另一种是一个大球,下缀四个小球,大灯球共360个,小灯球共1200个。她请米兰芬算一算楼上楼下四种灯各有多少个。米兰芬想了一想。先算楼下的,她将小灯球1200折半,得600,再减去大灯球360,得240,这是一大四小灯球的灯的盏数。然后用360减240,得120,这便是一大二小灯球的灯的盏数。再算楼上的,她先将1440折半,得720,减大灯球396,余324,再除以6,得54,这是缀十八个小球灯的灯的盏数。然后用3乘以54,得162,用396减162,得234,用234除以3得78,即下缀六个小球灯的灯78盏。卞宝云让人拿做灯的单子来念,果然丝毫不差。大家莫不称她为神算。

    这个问题若引进未知数列出方程是很容易解决的。但米兰芬的神算法是从哪里来的呢?应该说,故事人物米兰芬是读了著名古书《孙子算经》。

    《孙子算经》是我国古代一部较为普及的数学著作,在唐代初期用作“算学”的教科书。全书共分三卷,上卷叙述筹算的制度、方法和度量衡的单位;中卷举例说明筹算分数法,包括面积、体积、等比数列等计算题、应用题;下卷收集了不少有趣的名题、难题。书中对各种问题的解法很有特色,充分显示了中国筹算数学的特点。例如,下卷第31题是:

    “今有鸡兔同笼,上有35头,下有94足,问鸡、兔各几何?”

    对于“鸡兔同笼”问题,读者还可想出各种解法。例如,可以设想鸡、兔都是两只足,那么从35个头可知,应该只有70只足,但现在笼中实有94只足,两者相差24只,这是因为我们设想兔子只有两只足,每只少算两足,可见兔子数是12只。

    “鸡兔同笼”问题是算术中一类典型问题,历代“算学”课本大都引用此题,但题目与解法不尽一样。例如,在元代的著作《丁巨算法》一书中,原题变成:

    今有鸡兔100,共足272只,问鸡、兔各几何?

    书中先设想全部是兔,那么100只兔该有400只足,但现在实际只有272只足,两者相差400—272=128只,这是把鸡设想当作兔时多计算的足数。每只鸡多算两足,可见鸡数就是128的一半,即64只;兔数为36只。

    《孙子算经》对我国及一些外国的数学发展都有一定的影响。“鸡兔同笼”问题传到日本,变成了“鹤龟算”,改成这名词可能是因为日本人特别欣赏乌龟的缘故。

    3.1分钱换10万元

    从前国外有个贪财的大富翁,虽然已非常有钱,可是每天还在盘算着如何得到更多的钱。

    一天,富翁在路上遇到一个衣着俭朴的年轻人,他连眼皮也没眨一下,就走了过去,年轻人自言自语地说:“1分钱换10万元总会有人干的……”富翁一听,急忙回头叫住年轻人:“喂,你说的换钱是怎么回事?”

    年轻人很有礼貌地一鞠躬说:“先生,是这样的,我可以在一个月内,每天给你送来10万元钱,虽然不是白给,但是代价是微不足道的,第一天只要你付我1分钱。”

    “1分钱?”富翁简直不敢相信自己的耳朵。

    “对,是1分钱。”年轻人说,“第二天再给你10万元时,你要付两分钱。”

    富翁急切地问:“以后呢?”

    “第三天,付4分钱;第四天,付8分钱……以后每天付给我的钱数都要比前一天多一倍。”

    “还有什么附加条件呢?”

    “就这些,但我们俩都必须遵守协定,谁也不准反悔!”于是,两人签订了协定。

    10万元换几分钱!真是难得的好事!富翁满回答应:“好!就这样。”

    第二天一清早,年轻人准时到来,他说:“先生,我把10万元送来了。”随即从大口袋里掏出整整10万元,并对富翁说:“下面该你付钱了。”

    富翁掏出一分钱放在桌子上,陌生人看了看,满意地放入衣袋说:“明天见。”说完走出门去。

    10万元钱从天而降!天下最大的便宜事叫富翁遇上了,他赶忙把钱藏了起来。

    第二天早晨,年轻人又来了,他拿出10万元,收下两分钱,临走时说:“明天请准备好4分钱。”

    第二个10万元又到手了!富翁乐得手舞足蹈,心想这个年轻人又蠢又怪!世上这样的人要是多几个多好,我们这些聪明人就会发了还要发,变成举世无双的大富豪了。

    第三天,年轻人用10万元换走了4分钱。

    第四天换走8分钱,以后又是1角6分、3角2分、6角4分,七天过去了,富翁白白收入70万元,而付出的仅仅是1元2角7分,富翁真想把期限再延长些,哪怕多半个月也好呀!

    年轻人照常每天送10万元来,第8天付给他1元2角8分,第9天付2元5角6分,第10天付5元1角2分,第11天付10元2角4分,第12天付20元4角8分,第13天付40元9角6分,第14天付81元9角2分。

    14天过去了,富翁已经收入整整140万元,而付出的才150元多一点。

    又过了一段时间,富翁慢慢感到年轻人并不那么简单了,换钱也不像最初想象地那样合算了,15天后,每收入10万元,付出的已是几百元了,不过,总的来说还是收入的多,支出的少。

    可是,随着天数的增加,支出在飞速地增大,纯收入在逐日减少,第25天,富翁支出167772元1角6分,第一次超过了收入;第26天支出335544元3角2分,大大超过了收入;到了第30天支出竟达5368709元1角2分。

    年轻人最后一次离开时,富翁连续算了一昼夜,终于发现:为了收入330万元,他付出了。10737418元2角3分,亏了近800万元,富翁失算了!

    4.“韩信点兵”之谜

    “韩信点兵”传说是我国汉朝名将韩信计算士兵数目的独特方法,先于外国约五百年。他不让士兵报数,也不是五个。十个地去数,而是让士兵列队行进,先是每排3人,然后每排5人,最后每排7人,只将所余的士兵数站着便知士兵的总数,写成题目就是:

    “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问此物最小几何?”

    答曰:“二十三。”

    术曰:“三三数之剩二置一百四十,五五数之剩三置六十三,七七数之剩二置三十,并之得二百三十三,以二百十减之即得。”

    分析:所求的数N应该是5和7的倍数,同时被3除后余2;是3和7的倍数,同时被5除后余3;是3和5的倍数,同时被7除后余2,同时满足上述三个条件的数中最小的数。

    是5和7的倍数,同时被3除后余1的数是70。则余2的数就是70×2=140;是3和7的倍数,同时被5除余1的是21,则余3的数就是21×3=63;是3和5的倍数,同时被7除后余1的数是15,则余2的数就是15×2=30。

    所以,N=70×2+21×3+15×2-105×2=233-310=23

    5.古代升官试题

    传说唐代尚书杨损,廉洁奉公,任人唯贤。有一次,要在两名小吏中提升一人,主管提升工作的官员感到很难决断,便请示杨损。杨损认为,作为一个官员,不仅要有高尚的品德,还要有一定的文化水平。于是,他说:“一个官员应具备的一大技能是速算。让我出题来考考他们,谁算得快就提升谁。”杨损出了一道题:

    “有人在林中散步,无意中听到几个强盗在商讨如何分赃。他们说,如果每人分6匹布,则余5匹;每人分7匹布,则短少8匹。试问共有几个强盗几匹布?”两个小吏听过题目后,便用筹算解联立一次方程组。后来,先得出正确结果的小吏果真升了官,大家心服口服。

    这个故事反映出我国古代人民对于解联立一次方程组的熟练程度。事实上,在2 000多年前的《九章算术》中已系统地叙述了联立一次方程组的解法,这是中国古代数学的杰出贡献之一。

    《九章算术》是我国至今有传本的一部经典数学著作,内容极为丰富,它几乎集中了过去和当时的全部数学知识,将246个问题分为九章,所以叫做《九章算术》。

    《九章算术》不是出自某一个人的手笔,不是一个时代的作品。它是经过历代名家的修订和增补,才逐渐成为定本的。它成书于何时目前学术界尚无统一结论,据推测起码在公元1世纪之前。《九章算术》对我国以及一些外国的数学发展有很大影响,直到16世纪我国的数学著作大都还是受它的体例的影响。

    《九章算术》的第八章“方程”,给出了联立一次方程组的普遍解法,并且使用了负数,这在数学史上具有非常重要的意义。

    我国古代是用算筹来运算的,未知数不用符号表示,只是将各个系数用算筹依次布列成方阵的形式。“程”是变量的总名,也有计量、考核、程式的意思。“方程”的名称,就来源于此。

    《九章算术》第八章的第一题为:

    “今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?”

    “禾”指黍米,一“秉”即一捆,“上禾三秉,中禾二秉,下禾一秉,实三十九斗”就是说:三捆上等黍米,两捆中等黍米,一捆下等黍米,一共可打出黍米谷39斗。第八章中还有四元及五元的方程组,也是用类似的方法来解的。

    在国外,线性方程组的完整解法,直到17世纪末才由微积分的发明人莱布尼茨着手拟定。可见,从时间上来说,《九章算术》的解法实是在世界数学史上一大光辉成就,值得中国人自豪!

    自从《九章算术》提出了多元一次联立方程后,多少世纪没有显著的进步。贾宪、秦九韶、李治等人曾研究过一元高次方程。元朝杰出数学家朱世杰集前人之大成。建立了四元高次方程组理论,并称为“四元术”。他用天元、地元、人元、物元表示四个未知数,相当于现在的x、y、z、u。朱世芝的《四元玉鉴》一书,举例说明了一元方程、二元方程、三元方程、四元方程的布列方法和解法。其中有的例题相当复杂,数字惊人的庞大,不但过去从未有过,就是今天也很少见。可见朱世杰已经非常熟练地掌握了多元高次方程组的解法。

    在外国,多元方程组虽然也偶然在古代的民族中出现过,例如古巴比伦人借助数表处理过某种二元二次方程组,但较系统地研究却迟至16世纪,1559年法国人彪特才开始用不同的字母A,B,C……来表示不同的未知数。而过去不同未知数用同一符号来表示,以致含混不清。正式讨论多元高次方程组已到18世纪,由探究高次代数曲线的交点个数而引起。1764年法国人培祖提出用消去法的解法,这已在朱世杰之后四五百年了。

    6.五家共井

    我国最早提出不定方程问题,它由“五家共井”引起。古代,没有自来水,几家合用一水井是常见的事。《九章算术》一书第八章第十三题就是“五家共井”问题:

    今有五家共井,甲二绠不足,如乙一绠;乙三绠不足,如丙一绠;丙四绠不足,如丁一绠;丁五绠不足,如戊一绠;戊六绠不足,如甲一绠。如各得所不足一绠,皆逮。问井深、绠长各几何?

    用水桶到井中取水,当然少不了绳索,“绠”就是指“绳索”。原题的意思是:

    五家共用一水井。井深比2条甲家绳长还多1条乙家绳长;比3条乙家绳长还多1条丙家绳长;比4条丙家绳长还多1条丁家绳长;比5条丁家绳长还多1条戊家绳长;比6条戊家绳长还多1条甲家绳长。如果各家都增加所差的另一条取水绳索,刚刚好取水。试问井深、取水绳长各多少?

    我国古代数学家在《九章算术》的基础上对不定方程做出了辉煌的成绩。“五家共井”问题是后来百鸡术及大衍求一术的先声。

    “五家共井”问题,曾引起世界上很多数学家的注视。在西方数学史书中,把最早研究不定方程的功绩归于希腊丢番都。其实,他在公元250年左右才研究这些问题,要比我国迟200多年。

    公元6世纪上半期,张丘建在他的《张丘建算经》中有一道百鸡问题:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱,买鸡百只。问鸡翁、母、雏各几何?

    意思是,如果1只公鸡值5个钱;1只母鸡值3个钱;3只小鸡值1个钱。现用100个钱,买了100只鸡。问公鸡、母鸡、小鸡各多少?

    数学史家评论说,一道应用题有多组答案,是数学史上从未见到过的,百鸡问题开了先例。《张丘建算经》中没有给出解法,只说:“术曰:鸡翁每增四,鸡母每减七,鸡雏每益三,即得。”意思是:如果少买7只母鸡,就可多买4只公鸡和3只小鸡。因为7只母鸡值钱21,4只公鸡值钱20,两者相差3只小鸡的价格。只要得出一组答案,就可推出其余两组。但这解法怎么来的?书中没有说明。因此,所谓“百鸡术”即百鸡问题的解法就引起人们的极大兴趣。

    稍后,甄鸾在《数术记遗》一书中又提出了两个“百鸡问题”,题目意思与原百鸡问题相同,仅数字有所区别。到了宋代,著名数学家杨辉在他的《续古摘奇算法》一书中也引用了类似的问题:

    “钱一百买温柑、绿桔、扁桔共一百枚。只云温柑一枚七文,绿桔一枚三文,扁桔三枚一文。问各买几何?”

    到了明清时代,还有人提出了多于三元的“百鸡问题”。不过,各书均与《张丘建算经》一样,没有给出问题的一般解法。

    7世纪时,宋代有人对百鸡问题提出另一种解法,但只是数字的凑合。到了清代焦循在他的《加减乘除释》一书中指出其错误。之后,不断有人提出新的解法,但都没有完全得到普遍解决此类题目的通用方法。例如丁取忠在他的《数学拾遗》中给出一个比较简易的解法:先设没有公鸡。用100个钱买母鸡和小鸡共100只,得母鸡25只、小鸡75只。现在少买7只母鸡,多买4只公鸡和3只小鸡,便得第一组答案。同理可推出其余两组。直到19世纪,人们才把这类问题同“大衍求一术”结合起来研究。

    百鸡问题是一个历史名题,在世界上有很大影响。在国外数学书中常可看到类似的题目。

    7.仙鹤图之谜

    传说宝华寺曾藏有一幅鲜为人知的仙鹤图。这仙鹤图为数海法师所作,在他临终前秘传给他的一位弟子,并嘱咐他死后49天才能打开。数海法师圆寂后,这位弟子总想打开图看看,但又不愿违背师父遗嘱。过了42天,实在坚持不下去了,当天半夜,他打开图一看,原来是张仙鹤图。画面上有7棵松树,每棵松树上均有7只仙鹤,松树下面写了一个黑色的“七”字,但有一棵松树例外,这松树上一只仙鹤也没有,松树下面写了一个红色的“七”字。

    红色的“七”字是什么意思呢?弟子们无法理解。不过,因为数海法师神通广犬,精通算术。人们相信,图中必有奥秘。后来,有了负数概念,有人猜测,红色的“七”字,表示负数(-7)。但是,松树上有(-7)只仙鹤,又是什么意思呢?始终是个谜。自从秦始皇焚书坑儒后,宝贵的仙鹤图失传,这事情几乎被人们遗忘了。但是,过了二千多年,人们又想想了仙鹤图,这与下面的椰子问题有关。

    5个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途劳累,大家顾不上椰子,很快就睡觉了。第一个水手醒来后,把椰子分成五堆,余一只给了猴子,自己藏了一堆又去睡觉了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只给猴子,私藏一堆,再去入睡。天亮以后,大家发现椰子已剩下不多了,各人心里有数,但谁也不说。为了公平,大家把余下的椰子又分成五堆,每人得一堆,这时,巧得很,又余下一只,再给猴子。试问原先共有几只椰子?

    这是一道世界有名的趣味数学题。

    设最初共有椰子x只,天亮后大家一起分配时每人分得y只。

    世界著名物理学家李政道在访问中国科技大学时,曾在少年班提到这个题目,并介绍了怀德海的解法。

    怀德海是英国数理逻辑专家,对于上述椰子问题,他给出了一个异乎寻常的解法。

    首先,从方程(*)可看出,如果某数x1是方程的一个解,则x1+15625也是方程的解。这一点我们也可用下面的方法来考虑,由于原有的椰子曾被连续6次分成5堆,因此如果某数是该方程的一个解时,则把此数加上5(上标6)(5(上标6)=15625)后,仍旧是方程的解。通常人们解不定方程应用题,总是只注意它的正整数解,可是怀德海却与众不同,他的方法异乎寻常,他先借助负整数来帮忙,在找到一个负整数解之后,再过渡到正整数。就像在几何中引用辅助线、辅助角一样。

    在方程(*)中,设y=-1,则可得:

    1024x=-4096,∴    x=-4。

    既然-4是这个不定方程的一个特解,则-4+15 625也是方程的解。可见,所求的椰子数应是:

    -4+15625=15621(只)。

    怀德海自己说,他是用下面的想法“领悟”出-4是不定方程的一个特解的:

    假定当初有-4只椰子,则在其中硬拿出一只来给猴子后,根据正、负数减法,还剩下-4-1=-5(只),分成五堆,每堆便有-1只椰子。私自藏起一堆之后,还有四堆,每堆有-1只椰子,所以一共仍然是(-4)只椰子,这正好仍然回到没有分以前的情况。照这样分法,不仅5次、6次……可以一直分下去,都符合题目之要求。因此,在这个题目中,-4是一个神奇的数。

    按照常理来说,每堆椰子数为“负数”是毫无意义的,但从纯数学的观点来看,却是能满足题中分配方法的,并且是能帮助解决问题的。它正像物理学中的“负质量”或“虚功”一样,在解决具体问题时是有用的。

    怀德海的巧妙解法传到我国后,人们想起2000年前的仙鹤图。既然,一堆椰子的数目可以设想是负数,那么,一棵松树上的仙鹤的数目,也可设想为负数。可以推测,数海法师早就掌握了利用负数解决问题的高度技巧。

    8.掉进漩涡里的数

    三十多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

    比如,取自然数N=6,按角谷静的作法有:6÷2=3,3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2:4,4÷2=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1,最后得1。

    找个大数试试,取N=16384。

    16384÷2=8192,8192÷2=4096,4096÷2=2048,2084÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

    这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

    把它叫猜想,是因为到目前为止,还没有人能证明出按角谷静的作法,最终必然得1。

    这一串串数难道一点规律也没有吗?观察前面作过的两串数:

    6→3→10→5→16→8→4→2→1;

    16384→8192→4096→2048→1024→512→256→128→64→32→16→8→4→2→1。

    最后的三个数都是4→2→1。

    为了验证这个事实,从1开始算一下:

    3×1+1=4,4÷2=2,2÷2=1。

    结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,几十步,几百步,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

    计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

    其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

    随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象,现在以1998为例:

    1(上标2)+9(上标2)+9(上标2)+8(上标2)=1+81+81+64=227,

    2(上标2)+2(上标2)+7(上标2)=4+4+49=57,

    5(上标2)+7(上标2)=25+49=74,

    7(上标2)+4(上标2)=49+16=65,

    6(上标2)+5(上标2)=36+25=61,

    6(上标2)+1(上标2)=36+1=37,

    3(上标2)+7(上标2)=9+49=58,

    5(上标2)+8(上标2)=25+64=89。

    下面再经过八步,就又出现89,从而产生了循环。

    回数猜想是数学“黑洞”吗?

    所谓回数,就是一个数从左向右读和从右向左读都是一样,这样的数称之回数,如303,12821,88888……等都是回文式数,这种数在数中有无限多个。

    对回数进行研究,得出一个回数猜想。此猜想到现在也没有解决。猜想是这样表白的:不论开始采用什么数,在经过有限的步骤后,一定可以得到一个回文式数。这个有限的步骤是这样的:任取一个数,再把这个数倒过来,并将这两个数相加。然后再把这个数倒过来,与原来的数相加。只要重复这个过程,就可以获得回文式数。

    大家一看就知道,19394经过四步,就成了回文式数。数学家屡试屡对,无一例外。区别只有步骤多少。

    直到今天,还没有人证明这个猜想是对还是错。有一个196,此数看看很简单,数学家用电子计算机对它进行了几十万步的计算,没有能获得回文式数,但计算机并没有证明它永远产生不了回文式数。

    什么是“数学黑洞”?当写出一个任意的四位数(除四个数字完全一样的除外,例4444 7777等),再重新对其进行整理,从大到小的顺序重新排列,把最大的数当作千位数,接下来把次大的数当作百位数……依次类推。举例来说,如5477经过整理之后便是7754。接下来,把得到的这个数颠倒一下,然再求出这两个数的差(用大数减去小数,只看绝对值,不管正负号),然后,再对所得到的差数,把上述两个步骤再做一遍,于是又得到一个新的差数。

    重复以上步骤,做不了几次,就会发现出现神秘的数6174。任何不完全相同的四位数,经过重排和求差运算之后,都会得出6174。它好像数的黑洞,掉进去就出不来。

    为什么会出现这样有趣的黑洞数?这个难题困扰着数学界,尚需要数学家去探究其中的奥秘。

    神奇的“角谷猜想”

    三十多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

    比如,取自然数N=6,按角谷静的作法有:6÷2:3,3×3+1=10÷10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1最后得1。

    找个大数试试,取N=16384。

    1384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

    这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

    把它叫猜想,是因为到目前为止,还没有人能证明出按角谷静的作法,最终必然得1。

    这一串串数难道一点规律也没有吗?观察前面作过的两串数:

    6→3→10→16→8→4→2→1

    16384→8192→4096→2048→1024→512→256→128→64→32→16→8→4→2→1。

    最后的三个数都是4→2→1。

    为了验证这个事实,从1开始算一下:

    3×1+1=4,4÷2=2,2÷2=1。

    结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,几十步,几百步,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

    计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

    其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

    随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

    现在以1998为例:

    1(上标2)+9(上标2)+9(上标2)+8(上标2)=1+81+81+64=227

    2(上标2)+2(上标2)+7(上标2)=4+4+49=57

    5(上标2)+7(上标2)+25+49=74

    7(上标2)+4(上标2)=49+16=65

    6(上标2)+5(上标2)=36+25=61

    6(上标2)+5(上标2)=36+11=137

    3(上标2)+7(上标2)=9+49=58

    5(上标2)+8(上标2)=25+64=89

    下面再经过八步,就又出现89,从而产生了循环:

    捉摸不定的质数

    一个大于1的整数,如果除了它本身和1以外,不能被其他正整数所整除,这个整数就叫做质数。质数也叫素数,如2、3、5、7、11等都是质数。

    如何从正整数中把质数挑出来呢?自然数中有多少质数?人们还不清楚,因为它的规律很难寻找。它像一个顽皮的孩子一样,东躲西藏,和数学家捉迷藏。

    古希腊数学家、亚历山大图书馆馆长埃拉托塞尼提出了一种寻找质数的方法:先写出从1到任意一个你所希望达到的数为止的全部自然数。然后把从4开始的所有偶数画掉;再把能被3整除的数(3除外)画掉;接着把能被5整除的数(5除外)画掉……这样一直画下去,最后剩下的数,除1以外全部都是质数。如找1~30之间的质数:

    后人把这种寻找质数的方法叫埃拉托塞尼筛法。它可以像从沙子里筛石头那样,把质数筛选出来,质数表就是根据这个筛选原则编制出来的。

    数学家并不满足用筛法去寻找质数,因为用筛法求质数带有一定的盲目性,你不能预先知道要“筛”出什么质数来。数学家渴望找到的是质数的规律,以便更好地掌握质数。

    从质数表中可以看到质数分布的大致情况:

    1到1000之间有168个质数;

    1000到2000之间有135个质数;

    2000到3000之间有127个质数;

    3000到4000之间有120个质数;

    4000到5000之间有119个质数。随着自然数的变大,质数的分布越来越稀疏。

    质数把自己打扮一番,混在自然数里,使人很难以从外表看出它有什么特征。比如101、401、601、701都是质数,但是301和901却不是质数。又比如,11是质数,但111、11111以及由11个1、13个1、17个1排列成的数都不是质数,而由19个1、23个1、317个1排列成的数却都是质数。

    有人做过这样的验算:

    1(上标2)+1+41=43,

    2(上标2)+2+41=47,

    3(上标2)+3+41=53,

    39(上标2)+39+41=1601。

    从43到1601连续39个这样得到的数都是质数,但是再往下算就不再是质数了。

    40(上标2)+40+41=1681=41×41,1681是一个合数。

    被称为“17世纪最伟大的法国数学家”费马,对质数做过长期的研究。他曾提出过一个猜想:当n是非负整数时,形如f(n)=2(上标2n)+1的数一定是质数。后来,人们把2(上标2n)+1形式的数叫做“费马数”。

    费马提出这个猜想当然不是无根据的。他验算了前5个费马数:

    f(0)=2(上标2n)+1=2+1=3

    f(1)=2(上标2n)+1=4+1=5

    f(2)=2(上标2n)+1=16+1=17

    f(3)=2(上标2n)+1=256+1=257

    f(4)=2(上标2n)+1=65536+1=65537

    验算的结果个个都是质数。塞马没有再往下验算。为什么没往下算呢?有人猜测再往下算,数字太大了,不好算。但是,就是在第6个费马数上出了问题!费马死后67年,也就是1732年,25岁的瑞士数学家欧拉证明了第6个费马数不再是质数,而是合数。

    f(5)=2(上标25)+1=2(上标32)+14292967297=641×6700417

    更有趣的是,从第6个费马数开始,数学家再也没有找到哪个费马数是质数,全都是合数。现在人们找到的最大的费马数是f(1495)=2(上标21945)+1,其位数多达10(上标10584)位,这可是个超级天文数字。当然尽管它非常之大,但也不是质数。哈哈,质数和费马开了个大玩笑!

    在寻找质数方面做出重大贡献的,还有17世纪法国数学家。天主教的神父梅森。梅森于1644年发表了《物理数学随感》,其中提出了著名的“梅森数”。梅森数的形式为2(上标p)-1,梅森整理出11个P值使得2(上标p)-1至成为质数。这11个P值是2、3、5、7、13、17、19、31、67、127和257。你仔细观察这11个数不难发现,它们都是质数。不久,人们证明了:如果梅森数是质数,那么p一定是质数。但是要注意,这个结论的逆命题并不正确,即P是质数,2(上标p)-1不一定是质数,比如2(上标11)-1=2047=23×89,它是一个合数。

    梅森虽然提出了11个p值可以使梅森数成为质数,但是,他对11个P值并没有全部进行验算,其中的一个主要原因是数字太大,难以分解。当p=2、3、5、7、17、19时,相应的梅森数为3、7、31、127、8191、13107、524287。由于这些数比较小,人们已经验算出它们都是质数。

    1772年,历岁双目失明的数学家欧拉,用高超的心算本领证明了P=31的梅森数是质数:

    还剩下P=67、127、257三个相应的梅森数,它们究竟是不是质数,长时期无人去论证。梅森去世250年后,19仍年在纽约举行的数学学术会议上,数学家科勒教授做了一次十分精彩的学术报告。他登上讲台却一言不发,拿起粉笔在黑板上迅速写出:

    2(上标67)-1=147573952589676412927

    =193707721×761838257287

    然后就走回自己的座位。开始时会场里鸦雀无声,没过多久全场响起了经久不息的掌声。参加会议的人纷纷向科勒教授祝贺,祝贺他证明了第9个梅森数不是质数,而是合数!

    1914年,第10个梅森数被证明是质数;

    1952年,借助电子计算机的帮助证明了第11个梅森数不是质数。

    以后,数学家利用速度不断提高的电子计算机来寻找更大的梅森质教。1996年9月4日,美国威斯康星州克雷研究所的科学家,利用大型电子计算机找到了第33个梅森质数,这电是人类迄今为止所认识的最大的质数,它有378632位:2(上标1257787)-1,同时发现了新的完全数:2(上标1257787-1×2(上标1257786)。

    数学家尽管可以找到很大的质数,但是质数分布的确切规律仍然是一个谜。古老的质数,它还在和数学家捉迷藏呢!

    古埃及遗题

    《兰特纸草书》是古埃及人在4000年前的一本数学书,上面用象形文字记载了许多有趣的数学题,比如:

    在7,7×7,7×7×7,7×7×7×7,7×7×7×7×7,……这些数字上面有几个象形符号:房子、猫、老鼠、大麦、斗,翻译出来就是:

    “有7座房子,每座房子里有7只猫,每只猫吃了7只老鼠,每只老鼠吃了7穗大麦,每穗大麦种子可以长出7斗大麦,清算出房子、猫、老鼠、大麦和斗的总数。”

    奇怪的是古代俄罗斯民间也流传着类似的算术题:

    “路上走着七个老头,

    每个老头拿着七根手杖,

    每根手杖上有七个树权,

    每个树权上挂着七个竹篮,

    每个竹篮里有七个竹笼,

    每个竹笼里有七个麻雀,

    总共有多少麻雀?”

    古俄罗斯的题目比较简单,老头数是7,手杖数是7×7=49,树权数是7×7×7=49×7=343,竹篮数是7×7×7×7=343×7=2401,竹笼数是7×7×7×7×7=2401×7=16807,麻雀数是7×7×7×7×7×7=16807×7=117649。总共有十一万七千六百四十九只麻雀。七个老头能提着十一万多只麻雀溜弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重。

    《兰特纸草书》上在猫吃老鼠、老鼠吃大麦的问题后面有解答,说是用2801乘以7。

    求房子、猫、老鼠、大麦和斗的总数,就是求和7+7×7+7×7×7+7×7×7×7+7×7×7×7×7=7+49+343+2401+16807=19607。这同上面2801×7=19607的答数一样,古代埃及人在四千多年前就掌握了这种特殊的求和方法。

    类似的问题在一首古老的英国童谣中也出现过:

    “我赴圣地爱弗西,

    途遇妇子数有七,

    一人七袋手中提,

    一猫七子紧相依,

    妇与布袋猫与子,

    几何同时赴圣地?”

    意大利数学家斐波那契在1202年出版的《算盘书》中也有类似问题:

    “有7个老妇人在去罗马的路上,每个人有7匹骡子;每匹骡子驮7只口袋;每只口袋装7个大面包;每个面包带7把小刀;每把小刀有七层鞘,在去罗马的路上,妇人、骡子、面包、小刀和刀鞘,一共有多少?”

    同一类问题,在不同的时代、不同的国家以不同的形式出现,但是,时间最早的还要数古埃及《兰特纸草书》。

    遗嘱中的数学难题

    在按遗嘱分配遗产的问题中,有许多有趣的数学题。

    俄国著名数学家斯特兰诺留勃夫斯基曾提出到这样一道分配遗产问题:

    “父亲在遗属里要求把遗产的1/3分给儿子,2/5分给女儿;剩余的钱中,2500卢布偿还债务,3000卢布留给母亲,遗产共有多少?子女各分多少?”

    设总遗产为x卢布。

    则有1/3x+2/5x+2500+3000=x,

    解得:x=20625。

    儿子分20625×1/3=6875(卢布),

    女儿分20625×2/5=8250(卢布)。

    结果是女儿得是最多,得8250卢布,儿子次之,得6875卢布,母亲分得最少,得3000卢布,看来父亲最喜爱自己的女儿。

    下面的故事最初在阿拉伯民间流传,后来传到了世界各国,故事说:一位老人养了17只羊,老人去世后在遗嘱中要求将17只羊按比例分给三个儿子,大儿子分1/2,二儿子分1/3,三儿子分1/9,在分羊时不允许宰杀羊。

    看完父亲的遗嘱,三儿子犯了愁,17是个质数,它既不能被2整除,也不能被3和9整除,又不许杀羊来分,这可怎么办?

    聪明的邻居得到这个消息后,牵着一只羊跑来帮忙,邻居说:“我借给你们一只羊,这样18只羊就好分了。”

    老大分    18×1/2=9(只),

    老二分    18×1/3=(只),

    老三分    18×1/9=2(只)。

    合一起是9+6+2=17,正好这只羊,还剩下一只羊,邻居把它牵回去了。

    羊被邻居分完了,再深入想一想这个问题,我们会发现遗嘱中不合理的地方,如果把老人留的羊作为整体1的话,由于1/2+1/3+1/9=17/18

    所以或者是三个儿子不能把全部羊分完,还留下1/18,哪个儿子也没给;或者要是比他所留下的羊再多出一只时,才可以分,聪明的邻居就是根据17/18这个分数,又领来一只羊,凑成18/18,分去17/18,还剩下1/18只羊,就是他自己的那只羊。

    某人临死时,他的妻子已经怀孕,他对妻子说:“你生下的孩子如果是男的,把财产的2/3给他;如果是女的,把财产的2/5给她,剩下的给你。”说完就死了。

    说也凑巧,他妻子生下了龙风胎,这一下财产将怎样分?

    可以按比例来解:儿子和妻子的分配比例是专2/3:1/3=2:1,女儿和妻子的分配比便是2/5:3/5=2:3。

    由此可知女儿、妻子、儿子的分配比例是2:3:6,按这个比例分配就合理了。

    毕达哥拉斯的数学思想源自中国吗?

    毕达哥拉斯是古希腊最博学、最富于世界文化色彩的人物之一。他一生在哲学、科学和宗教方面作出了许多重要的贡献,也留下一些不解之谜,这些难解之谜既与他深奥的思想有关,也与他传奇般的经历有关。

    毕达哥拉斯最独特的思想与他对数而作的哲学解释有关,其中最有趣的是他的数的分类表。毕达哥拉斯认为,从“1”到“10”是神圣的数,“1”代表理性,是创造者,由“1”产生原始的运动或“2”,接着就产生第一个数“3”,“3”就是宇宙。而在10个数中,“4”比其他任何数都具有更多象征的价值,它是宇宙的创造主的象征,又是创造主创造宇宙时的数的模型,因为物理对象是由点、线、面、体这种“4”的流动过程产生出来的。“5”处于“10”的中间,是中间数,包含了一个雄性的奇数“3”和雌性的偶数“2”。“6”是第一个完美的数“5”和“1”相加的结果,它代表生命本性的6个等级,从精子开始,一直到神的生命,达到最高点。“7”这个数有独特之点,在10个数中,“7”惟一不是任何数的因子,又不是任何数的乘积的数。“8”为第一个立方数,即2(上标3)=8。“9”是“3”的平方,是在“10”以前的最后一个数,所以占有重要的地位。“10”是最完美的数,因为1、2、3、4之和就是“10”。这使一些学者联想到中国易学中的“河图”,“河图”数也由从1到10的自然数而构成。

    在毕达哥拉斯学院里,还流行着一种所谓“数字幻方”的巧妙的字谜游戏,这种“数字幻方”以字母表示的数而构成,类似中国的“洛书”(或称九宫图),而“洛书”若以数式表示就是一种幻方。由于毕达哥拉斯的数理观念与中国易学的原始象数思想在思维方式上有如此惊人的一致性和相似之处,一些学者早就从东西方文化交流史的角度探讨两者可能的关系和影响。有的学者干脆提出,毕达哥拉斯的数论主要接受了来自中国(而非埃及)的影响。英国数学家朗赛洛德·霍格本在其数学名著《大众数学》中将这一看法表述得十分明确。他说:“中国上古所传下来的‘洛书’,在2400年前便已传人希腊”(第四章《古代的计数知识》)。关于毕达哥拉斯的数论与中国古代数观念的相似性。李约瑟在其著作中也一再予以强调,如说:“把奇、偶数同阴性、阳性联系起来,这种情况既可以在古代中国人的议论中找到,同样也可在毕达哥拉斯学派的言论中找到”(《中国的科学与文明》卷三《数学》各节)。李约瑟认为,数的神秘主义和数字学是希腊和中国最初所共有的,不过对导致这种相似性的原因,李约瑟并没有作进一步的推论。

    此外,也有人反过来提出中国数学受古希腊影响的主张。如研究中国数学史的西方汉学家塞迪约·洛利亚等人就认为,中国人从来不曾在数学中获得任何有价值的成就,他们所掌握的数学知识是从希腊传人的。现在在学术界已很少有人坚持这种论断了。

    最近有学者强调,中国数学传入希腊并不是一个孤立的事实,如与教学的应用密切相关的乐律。中国对古希腊的影响有迹可寻,甚至有人提出,毕达哥拉斯本人不仅曾到过埃及和印度,甚至到过中国。当然,由于缺乏充实的文献和实证的依据,这种论断很大程度上是依据传说和间接的资料推测出来的,因而仍然是假设性的。

    公元前的齿轮计算机

    1900年,一位以采集海绵为职业的希腊潜水员,在安蒂基西拉海峡的水底,发现一个巨大的黑影。他游过去一看,不由大吃一惊。原来,这是一艘古代沉船的残骸。这个意外的发现使他高兴万分,他再度潜下水,仔细察看,发现古船里装有大理石雕像和青铜雕像。

    不久这条沉船被打捞上来。经专家考证,这是一艘沉没水下已达2000年之久的古船。也就是说,它在公元初就沉没了。船上珍贵的古代艺术珍宝马上得到挽救和保护。

    然而,奇迹很快就发生了,而它的价值远远超过了所有雕像。

    那是在工作人员分析、清理船上物品时发现的,在没有用的杂物中有一团沾满锈痕的东西。经过认真的处理,人们发现那里面有青铜版,还有一块被机械加工的铜圆圈残段,上面刻有精细的刻度和奇怪的文字。专家们马上意识到这圆圈非同一般,古代船上怎么会有这样的东西呢?

    经过两次认真的拆卸、清洗之后,专家们更加惊叹不已。摆在他们面前的那许多的细节部分清洗后显出的原形,竟是一台真正的机器,这台机器是由活动指针、复杂的刻度盘、旋转的齿轮和刻着文字的金属版组成的,经复制发现它有二十多个小型齿轮,一种卷动传动装置和一只冠状齿轮,在一侧是一根指轴,指轴一转动,刻度盘便可以各种不同的速度随之转动。指针被青铜活动版保护起来,上面有长长的铭文供人阅读。

    美国学者普莱斯用X光检查了这台机械装置,认为它是一台计算机,用它可以计算太阳、月亮和其他一些行星的运行。据检测,它的制造年代是公元前82年。这不能不令世人感到惊异。要知道,计算机是1642年才由帕斯卡尔发明的,而且当时他制造的计算机械准确度很差。虽然人们公认希腊人是古代最有智慧的民族,但这台古代计算机的出现,还是令人感到不可理解。

    还有,这个机械装置全部是由金属制成的,使用了精密的齿轮传动装置。而人们都知道金属齿轮传动是在文艺复兴时代才使用的。这涉及到制作它时必须具备的车、钳、铣、刨等机械加工工具,而这些工具在古希腊都是根本就不存在的。

    于是人们不得不面临这样一个问题:这台“安蒂基西拉机器”到底是谁制造的?

    有人说,如果它确是古希腊人制造的,那么人们对古希腊科学技术的理解恐怕要彻底改写。但这改写又没法进行,因为这个计算机只是一个孤证,关于它的制造的一切人们都无法得知。在古希腊和其他一切古代民族的文献中,也从来没有任何关于计算机机械的记载。

    如果它不是古希腊人所造,那么必定出于远比古希腊人更有智慧,科学技术和工艺水平也要高得多的智慧生命之手。

    那么,它是谁造的呢?

    阿拉伯数字之谜

    1971年,埃及阿思温大水坝在盛大庆祝仪式中宣告落成。水坝高114米,长3600米,人工湖面积达5180平方公里。水坝建成后,长久以来尼罗河洪水每年为患的问题终于解决,从此滔滔河水可供灌溉之需。当时参加水坝揭幕仪式的人恐怕没有几个知道,早在1000年前便有个“疯癫”科学家想出过如阿思温大水坝一样的工程构想,只是由于那个时代的技术不足以应付所构想的巨大工程,才无法实现而已。这位阿拉伯思想家,就是伊本·阿尔海森姆,西方历史学家则称他为阿尔哈森。阿尔哈森虽然称疯子,可是一点不疯,而是高瞻远瞩的天才、中古时代最伟大的伊斯兰科学家,其创造才华和进取精神足以与克卜勒、达文奇和牛顿等人相提并论。

    公元965年阿尔哈森生于伊拉克,30岁时便精通数学、哲学、物理和医学,因此当时对科学极有兴趣的埃及国王阿尔赫金请阿尔哈森到开罗继续进行研究工作。阿尔哈森加入国王资助的科学研究机构不久,提出了一项见解,认为尼罗河应该筑水坝蓄水防洪,而阿思温的河峡是理想的筑坝地点。国王听了非常高兴,立即命令阿尔哈森着手进行,并且派了大批工程师和工人同往。但这位科学家实地视察并与工程师商讨过各项技术问题,即断定凭当时所能运用的工具,这项筑坝蓄水的计划是不切实际的。

    不幸的是他在国王心里挑起了极大的希望,而国王的可怕习惯是把引致他失望的人处死。阿尔哈森知道这点,于是鼓起勇气承认失败,同时表示他当时精神错乱,所以不能为此事负责。原来回教法律禁止用残暴方式对待发疯的人,认为这种人是受真神“感染”才有疯癫行为。因此,这位假装疯子的科学家死罪得免、活罪难饶,被投入狱中。他在狱中获准继续进行各种研究,直至1021年国王逝世才获释。

    从那时开始,阿尔哈森便抄写、售卖欧几里德、托雷米等希腊学者名著的阿拉伯文版本,以维持生计,而大部分时间仍用于研究工作。后来他写了一篇非常出色的论文,题目叫做《论光学》,其中谈到人的视觉原理,指出人能视物不是因眼睛发射光线到物体上,而是物体向每一个角度发出或反射的光线到眼睛里去。同时,他是历史上第一个能够解释为什么物体距离越远,便显得越细小。这项解释在今天看来,当然是简单易明的道理,但是在17世纪之前,并不易为人接受。由于阿尔哈森的确是一位科学先驱,思想和认识都远远超越时代,难怪当时比他落后的人都把他看成了真正的疯子。

    假如阿尔哈森有一群门生,能将他的思想概念发扬光大,那么人类的科学发展史便可能早已改写。例如,阿尔哈森证明将一件物体放在黑暗房间外面,让物体反射光线透过小孔,可在黑暗房间内的白屏幕上形成这件物体的颠倒影像,而这正是摄影术的最基本原理。但那时没有人想到将这个原理加以应用,否则照相机就可能成为中古时代埃及的一项发明了。透镜本来也有相似的利用价值,可是也无人加以利用。阿尔哈森追寻探索的范围涉及多方面的知识,这从他对阿思温大坝的远大眼光,可见一斑,不过他似乎对眼睛的研究,特别专长。他对眼球结构的描写,为后来的发明家发明透镜奠下基础。由于他对眼球结构的描述正确,1246年他的光学论文译成拉丁文后,大部分采人标准医学书籍。今日英文中眼球水晶体一字来自拉丁文小扁豆,因为阿尔哈森当日谈到眼睛这一部分时,把水晶体形容为小扁豆状。

    阿尔哈森是中古时代的科学家,其超时代又最不同凡响的一点,是喜欢引用真凭实据来证明各种假设正确无误,而并非任何时候都把阿基米德或亚里士多德等古代权威的说法奉为万应灵药。据说伽利略曾自比萨斜塔抛下轻重不一的物件,以否定亚里士多德所说重物比轻物下降较快的说法,事实上阿尔哈森做这个实验比伽利略还要早。在阿尔哈森设计用来测验其假设的许多实验中,最具有成效的也许是测验光线折射的办法。例如他将一个玻璃圆筒放进水中,测验光线透过不同密度的介质时会发生怎样的折射。他还进行了各种实验以确定透镜的放大性能,又建造了一副车床用来制造曲面透镜。

    在因循守旧的文化环境中,无论宗教领袖或政治领袖都很可能排斥“危险”的新见解,因此要坚持实事求是的精神,不但需要想像力,而且需要勇气。阿尔哈森1039年逝世后足足600年内,他的科学方法,仍被许多人视作疯癫的表现。

    阿尔哈森生在回教世界哲学与科学思想百家争鸣时期。穆罕默德逝世后不到一百年,回教信徒已建立从印度伸展到西班牙的阿拉伯大帝国。虽然帝国不久便瓦解,但宗教、经济,甚至语言仍然大致统一。撒马尔罕、巴格达、开罗、托利多、柯多瓦,及其他大城市,都成了回教世界知识互通的中心。

    阿拉伯人在思想上兼收并蓄,从希腊、犹太、波斯民族及信奉基督教的叙利亚人中吸收他们感兴趣的思想,以及建筑术等学问。不过他们最向往希腊哲学家亚里士多德的思想,又将古代哲学与科学著作翻译过来,供回教世界的学子阅读研究。虽然当时西班牙柯多瓦市的学府已拥有图画60万册闻名,但西欧其他地区则陷入无书可读的深渊。直至12世纪时,才有一位阿拉伯哲学家阿佛洛斯借个人著术,将亚里士多德的思想重新介绍到基督教徒支配的欧洲。

    大部分回教徒接受古希腊人对自然现象的解释,只有阿尔哈森和其他几位极具慧眼的思想家质疑,据说在实验物理学和医学方面写过250卷书的阿维辛纳(980至1037年)即其中之一。这些学者对欧洲的科学思想影响极大。今天英文中的某些数学和化学名词就是从阿拉伯语而来。氨、硼砂、硝酸和硫酸等不过是回教科学家鉴定的众多化合物中几种而已;他们的零和十进法概念演变成现代算术和数目字,使我们得益不少。如果没有这些概念,就不会有现代人每天都用的阿拉伯数目字了。

    到13世纪,由于内部冲突和蒙古人入侵,回教势力日趋式微,连西班牙也再度为基督教徒统治。所以回教世界的人对科学与创造性人文学科失去热情,而且无法回复旧观。

    荒野中的几何图形之谜

    过去人类许多特异成就有何用处,至今仍未揭晓,而且继续引起学者热烈争论。以那斯克荒原一项古怪发现为中心引起的争论,便属于这一类。那斯克荒原是秘鲁南部那斯克镇附近一片干旱高原。这地区一度是那斯克印第安人的故乡。15世纪,那斯克文化为印卡帝国吸收后,随而由于西班牙人入侵,差不多完全消灭。但在那斯克河畔有一座包括六个尖塔的庙宇遗址,足以证明过去这里曾有一个重要的文化存在,可惜这类线索极少留存。

    1926年,秘鲁考古学家泰罗率领一个研究小组来到这个地区。当时他们并不知道自己实际上站在那斯克人最伟大也最令人不解的成就上。直至一天下午,秘鲁籍组员瑟斯丕和美国籍组员克罗伯攀上一座山头,才发现这个奇观。他们居高临下,忽然见到在许多绵长的模糊线条在荒原上纵横交织,是他们在平地上看不出来的。研究人员经过考察,发现这些线条是清除地上石块后露出浅黄色泥土而造成的。泥土露出来,日久逐渐变成与荒原表面其他地方一样的紫褐色,因此,那些线条只有从高处才能看得出来。

    最初的一种说法,认为这些线条是古代那斯克人的道路。但在1920年代后期和1930年代初期,考古学家利用飞机多次在荒原上空飞越考察,发现大批分布很广的复杂记号,此说从此被推翻。除了线条,机上考察人员还看到许多巨大长方形和其他几何图形,以及许多种动物的优美线条画,包括猴子、蜘蛛、蜂鸟甚至鲸,也有花朵、手掌和螺旋形图案,每个长约1米至183米不等。这样的线条显然不是道路。

    虽然有些线条长达数公里,但不论它们越过哪一种地形,或甚至伸展到山顶,其直线的偏差在1公里内不过1~2米。究竟那斯克人在荒原上留下这样的记号来干什么?这些线条绝不是艺术作品,因为当时那斯克人不可能由高空俯瞰欣赏。同时,这些线条不管在高空摄影照片上显得多么壮观,也不是古代科学或工程杰作;因为只要动员1000名印第安人,费时3个星期,便可把所要移去的石头移去。至于线条何以会笔直,则可能是先排列几根标杆,在其间拉绳索画出直线来。用这种简单办法,如果与远方的一个准则点连合运用,只需要两三根木杆即可。

    最使学者感到兴趣的并不是线条如何造成,而是线条有何用途。1941年,美国考古学家科索克首先到那斯克研究,发现许多线条和图案,并且一一记录下来。他的结论是:线条用以观察天文。此一说法引起德国数学家赖歇的兴趣。从1946年开始,她穷毕生精力,企图揭开这些线条的奥秘。赖歇和科索克一样,相信这些线条指向主要星座或太阳,以便那斯克人计算日期。她认为那些动物以及别的图形,也许代表某些星座,因此整个复杂的记号网很可能是一个巨型日历。

    赖歇发现许多记号似与太阳或星座排成直线,但缺少确实证据支持她的说法。1968年,华盛顿史密生天体物理学天文台的天文学家霍金斯,在英国南部著名的新石器时代遗迹“巨形石柱”发现类似的天文定线之后,接着便将注意力转向那斯克线条。霍金斯拥有一种极有利的工具,用以探查那斯克人们的奥秘。这种工具就是电脑。他将彻底考察得到的资料输入电脑,藉以查测每一条直线在过去7000年内,是否曾对准太阳、月亮或一个主要星座。结果显示出一些使人耳目一新的定线。例如,一个名为“大长方形”的图形,在公元610年及其前后各30年内,对准昴星团。这个日期,与现场发现的一根木柱经放射性的碳素测定法鉴定的年代不谋而合。这个办法虽然可证明那些图形年代久远,但电脑仍不能解开线条的奥秘,因为那些似有特殊意义的定线,看来只是巧合而已。

    1977年,英国电影制片家莫理林亦加人这项研究。莫理森曾在南美洲拍过几部电视片,其中包括赖歇和霍金斯的研究工作纪录片,因此也对这个谜团深感兴趣,决心要找出答案。莫理森认为要寻求解答,必须明了那斯克人的风俗和宗教。虽然那斯克人早已消失,但在安第斯山脉其他地区,某些地点亦有类似的线条存在,因此他希望居住在那些地点的印第安人,能够透露造这些线条的意图。

    莫理森的好奇心受1926年发现这些线条的瑟斯丕启发。瑟斯丕告诉莫理森说,他相信这些线条是印第安人专作宗教用途的路径。瑟斯丕早在1939年就提出这种说法,但苦于找不到证据。莫理森则发现了一点线索,那是一本记载1653年以后事迹的西班牙编年史,里面记载印卡帝国首都库斯科的印第安人如何从太阳神殿出发,踏上伸向四面八方各直线,到沿途安设的神龛参拜。既然那斯克荒原上的线条在一堆堆石头之间,那些石堆不就是笔直的神圣路径连接的神龛吗?

    于是,莫理森前往库斯科,希望找到那些神圣路径。他此行没有成功,因为路径的痕迹早已全部湮灭。但是他并不气馁,继续到邻国玻利维亚搜寻。1977年6月,莫理森终于在一个艾马拉人聚居的荒僻地区,找到了一整批并非移去荒原上的石块,而是割除灌木形成的线条。这些线条和那斯克荒原的线条一样笔直,也是不顾任何地势阻挡成直线向前伸展的。同时,正是这些线条将用石堆筑的神龛连接起来,而且许多神龛还筑于山顶。

    艾马拉印第安膜拜这些石堆,相信石堆里面住着祖先和魂魄或当地神明,常常供奉一些小祭品或古柯叶(一种作用和缓的麻醉剂)。莫理森发现,好几条连接神龛的路线在一座庙宇会合。印第安人即沿着这些路线前往庙宇,途中不时停下来向沿路的神龛参拜。在他们看来,偏离这些路线就会走人妖魔鬼怪领域。艾马拉人还相信,神龛位置超高,其中神灵越具神威,由此可知为什么这里的路径也和那斯克的一样,不避任何险阻而直达山顶。

    莫理森在后来所著的《朝圣之途》一书中,以生动笔法叙述他冒险探秘的经历,而且说出他相信那些线条就是“朝圣之途”。他认为那斯克图形可能是代表神灵及动物的精灵,那些已经清除石头的大块土地则可能是宗教集会的地点。至于这些线条的历史年代,由于缺乏足够证据,尚无法确定。最多我们只能说那斯克线条可能有1000至2000年的历史。

    那斯克线条之谜迄今尚未完全揭晓,莫理森的结论仍然有待证实。而且不管是出于巧合还是有意,有些线条的确像天文学上的定线。目前,那斯克线条受到保护,以供日后研究,因为每一块没有翻起的石头可能隐藏着重要的线索。

    不用计算机能证明“四色问题”吗?

    1976年有两位年轻的科学家阿佩尔和哈肯应用计算机证明了“四色问题”。当时为世人所震惊。这是依靠计算机证明的惟一的大定理。

    “四色问题”也称“四色猜想”。我们在绘制地图时,为了区别一个国家与它的邻国,一个省区与它邻近的省区,总要给不同的国(省区)与它的相邻近的国(省区)画上不同的颜色。当我们打开任何一本彩色地图册就会发现,只有四种颜色。也就是说,用四种颜色就可以把各国(省区)区分出来。这就是“四色问题”。更确切地说,在平面上或球面上绘制地图只需要用四种颜色。

    提出四色猜想的第一位数学家是德国的莫比乌斯,这是1840年的事。1850年一位英国学生叫葛斯瑞也认为绘制地图四种颜色足够了。其后不久,他给弟弟写信并“证明”这个猜想正确:可惜这个证明被遗失了,许多数学家认为此证明可能也是错的。他的弟弟把葛斯瑞的这一想法写信告诉美国几位有名望的数学家,希望他们证明四色猜想。但直到1879年,其中的凯雷虽然对此问题很感兴趣,但他宣布无法证明四色猜想。

    继凯雷之后,有一位从事律师工作的肯普在数学学术杂志上发表了一篇论文,说他“证明”了四色问题。可惜,他的证明也是错误的,这个错误在1899年被数学家希伍德指出。而希伍德本人发表了一篇严密论证的文章,但是他只证明五色,没有证明四色。当然,从五色着手改进方法或许能证明四色,但问题并不这样简单,从那以后一百多年以来,许多数学家都想证明四色猜想。开始选择另外的方向,在国家数目上加以限制。首先是费兰克林在1920年证明,当国家的数目≤25时,四色定理成立。1926年国家数提高到27,1936年提高到31,1943年又提高到35,1968年又提高到40。为什么国家数目增加得如此之慢呢?因为每增加一二个,不同国家之间的边界关系类型就会变得复杂得多,而证明的关键是必须把地图的所有类型都考虑进去,这就给证明带来更大的困难。所以,很长时间内,四色问题未能加以证明。

    1976年,阿佩尔和哈肯利用计算机加以证明,前后花了七个月时间。第一步是把所有可能的地图类型归结为有限多个不同的类型,他们归类成1936个。仅这一步就耗时六个月;第二步是证明它们用四色足够,花了一个月时间。在计算机的帮助下,他们完成了这个证明。

    但是从1976年以来,有不少数学家对此抱有怀疑态度。不论怎么说,这件事本身说明电子计算机对数学家来说是不可缺少的工具。我们的想法是,能不能找到不依赖电子计算机的人工证明,关于这一关,仍然有数学家在不断的探索中。但愿功夫不负有心人。

    寻找相亲数

    公元前6世纪,古希腊有个毕达哥拉斯学派,学派的创始人是数学家毕达哥拉斯。这个学派特别喜欢数、推崇数,他们把人性也赋予了数。比如,他们把大于1的奇数象征为男性,起名叫“男人数”;把偶数看做女性,叫“女人数”(也有史书记载,把奇数象征女性,偶数象征男性)。数5是第一个男人数与第一个女人数之和,它象征着结婚或联合。

    人之间讲友谊,数之间也有“相亲相爱”可言。毕达哥拉斯学派的人常说:“谁是我的好朋友,我们就会像220和284一样。”为什么220和284象征着好朋友呢?原来220除去本身以外还有11个因数,它们是1、2、4、5、10、11、20、22、44、55、110。这11个因数之和恰好等于284。同样,284的因数除去它本身还有1、2、4、71、142,它们的和也恰好等于220。即

    1+2+4+5+10+11+20+22+44+55+110=284;

    1+2+4+71+142=220。

    这两个数是你中有我,我中有你,相亲相爱,形影不离。古希腊的数学家给具有这样性质的两个数,起名叫“相亲数”或“亲和数”。

    220和284是人类发现的第一对“相亲数”,也是最小的一对“相亲数”。17世纪法国数学家费马找到了第二对“相亲数”17296和18416;几乎在同一时期,另一位法国数学家找到了第三对“相亲数”9363544和9437056。最令人震惊的是,瑞士著名数学家欧拉于1750年一次就公布了60对“相亲数”。数学家惊呼:“欧拉把一切‘相亲数’都找完了!”

    谁料想,又过了一个世纪,意大利一位年仅16岁的青年巴格尼于1866年公布了一对“相亲数”,它们只比220和284稍大一点,是1184和1210。前面提到的几位大数学家竟无一人找到它们,让这对不大的“相亲数”从鼻子底下轻易地溜走了。

    最近,美国数学家在耶鲁大学的电子计算机上,对所有110万以下的数逐一进行了检验,总共找到了42对“相亲数”。下面列出10万以内的13对“相亲数”:

    220=2×2×5×11,

    284=2×2×71;

    1184=2×2×2×2×2×37,

    1210=2×5×11×11;

    2620=2×2×5×131,

    2924=2×2×17×43;

    5020=2×2×5×251,

    5564=2×2×13×107;

    6232=2×2×2×19×41,

    6368=2×2×2×2×2×199;

    10744=2×2×2×17×79,

    10856=2×2×2×23×59;

    12285=3×3×3×5×7×13,

    14595=3×5×7×139;

    17296=2×2×2×2×23×47,

    18416=2×2×2×2×1151;

    63020=2×2×5×23×137,

    76084=2×2×23×827;

    66928=2×2×2×2×47×89,

    66992=2×2×2×2×53×79;

    67095=3×3×3×5×7×71,

    71145=3×3×3×5×17×31;

    69615=3×3×5×7×13×17,

    87633=3×3×7×13×107;

    79750=2×5×5×5×11×29,

    88730=2×5×19×467。

    这里把自然数都分解成质因数的连乘积,有了质因数就可以找出这个数的所有真因数,进而就可以判断两个数是不是相亲数。比如,220=2×2×5×11,284=2×2×71,其中220所含的质因数是2、2、5、11,这时就可以知道220的因数是1、2、2×2、5、2×5、11、2×2×5、2×11、2×2×11、5×11、2×5×11,一共是11个,这11个数相加恰好等于284;而284的质因数是2、2、71,由它们和1组成的因数是1、2、2×2、71、2×71,共5个,这5个真因数之和恰好是220,这样一来就证明了220和284是一对“相亲数”。由上面做法不难看出,把一个数分解为质因数的连乘积是寻找或证明“相亲数”的关键。

    目前,找到的“相亲数”已经超过1000对。但是,“相亲数”是不是有无穷多对?它们的分布有什么规律性?这些问题到目前为止数学家也没有得到确定的答案。这还是一个有待探索的课题。

    1946年,第一台计算机的诞生,结束了笔算寻找相亲数的历史。据70年代统计,人们共找到1200多对相亲数,并且,有人还曾有序不漏地用计算机检验与搜寻相亲数,例如近10年来,美国数学家在耶鲁大学先进的计算机上,对所有100万以下的数逐一进行检验,总共找到了42对相亲数,发现10万以下的仅有13对,部分地消除了对欧拉等人列出的相亲数数表的疑虑。但因计算机功能与数学方法的不够,还没有重大突破,越往下去,难度更大。

    目前,寻找相亲数还有许多有待探求的问题,如:目前找到的每一对相亲数所含的两个数,总是同时为偶数或同时为奇数,是否存在一个是偶数,而另一个是奇数的相亲数?目前找到的奇相亲数均是3的倍数,这是偶然性,还是必然规律?等等。

    5000年的人类文明给我们留下了浩瀚无边的知识大海。在汪洋大海中最古老也最深沉的是数。数的理论研究成为科学基础的基础。德国大数学家高斯曾把数的理论置于科学之巅,这一点也不过分。然而,时至今日,这个数的世界仍然是一个充满神秘的威严的“湖夫金字塔”,这里涉及的“亲和数”也是其中一个最富有传奇色彩的世界难题,有许多谜待揭开,谁揭开谜谁就是英雄好汉。

    上面回顾2000多年数学家的不懈努力,发现了1000对以上的相亲数,“看似平凡最崎岖,成如容易确艰辛”,未来的工作正等待着不畏困苦的数学家与计算机专家,“路漫漫其修远兮,吾将上下而求索”。

    传说,古代有一个秀才游桂林的斗鸡山,觉得山名有趣,信口说出一句话:

    “斗鸡山上山鸡斗。”

    他想把这句话作为上联来对一副对联,可是下联自己也对不上来。回家后便请教自己的老师,老师想了一下说:“我不久前游览了龙隐洞,就以此给你对个下联。”老师念道:

    “龙隐洞中洞隐龙。”

    对得很巧。这是一副回文对联。

    古代诗人王融曾写过一首著名的回文诗:“风朝拂锦幔,月晓照莲池。”反过来读:“池莲照晓月,幔锦拂朝风。”不管怎样读,都是一首诗。

    有趣的是,数学家族里的主要成员数中也有回文的,你看数101,正着读倒着读都是101;再看32123,正着读倒着读都是32123。这种正反读都一样的数很多,数学家给它们起了一个特殊的名字——回文式数,简称回文数。

    围绕着对回文数的研究,数学家们发现,有的回文数不老实,不是明明白白地站在数字的队伍里,而是隐藏在其他数里,经过特殊变换以后才显露真容。比如83,它不是回文数,将它与其倒数相加,83+38=121,就变成了回文数121。经过多次验算,数学家提出了一个猜想:任取一个自然数,把它倒过来与原数相加,然后把这个和数再与它的倒数相加,一直重复这个运算,最后总能得到一个回文数。数学家把这个猜想叫做“回数猜想”。

    请看:

    83:83+38=121,经过1步运算就能得到回文数121;

    68:68+86=154,154+451=605,606+506=1111,1111是回文数,只需3步运算就能得到;

    195:195+591=786,786+687=1473,1473+3741=5214,5214+4125=9339,要运算4步,得到的回文数是9339。

    是不是所有数经过上述运算都能产生回文数?也就是说,回数猜想是对的还是错的?这个问题至今没有解决。

    最初,人们是一个数一个数地去验算。当有人对196进行上述运算时,算了5万步,所处理的数已达到21000位,仍没有获得回文数。人们就猜测,也许196永远也变不成回文数。如果真的是这样,那么“回数猜想”就是错误的。然而,不管你算了多少步,这种运算总没到头,没到头就不能否定,要否定必须给出足够的理由。

    后来,人们又发现,在10万个自然数中,有5996个数,不管运算多久,似乎也产生不出回文数,196就是其中最小的一个。但是,不管怎样运算,就是没有人能找出它们产生不了回文数的确凿证据来。所以只能用含糊的词“似乎”来表述。

    此路不通。一些数学家就采取另外的方法来研究。他们对既是质数又是回文数的数进行了特别的研究,一方面想看看这些数有什么特性或规律,另一方面也想从中找出证明回数猜想的蛛丝马迹。

    通过研究,数学家发现了一些有特殊性质的回文质数。比如19391,把它的5个数字写在一个圆周上,你从其中任一个数开始,不管是顺时针写还是逆时针写,写出来的5位数都是质数。这种回文质数很少。

    数学家还发现回文质数除11外必须有奇数个数字。因为每个有偶数个数字的回文数,必然是11的倍数,所以它肯定不是质数。比如125521是一个有6位数字的回文数。判断能被11整除的方法是:一个数所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除。125521的奇数位数字是1、5、2,而偶数数字是2、5、1,而偶数位数字是2、2、1,它们和的差是:

    (2+5+1)-(1+5+2)=0是11的倍数,所以125521可以被11整除,它不是质数。

    有些回文数相乘之后,所得乘积还是回文数。例如212×141=29892。这样的例子还不少:

    11×11=121,22×22=484.111×111=12 321,111×121=13431,111×131=14 541,121×212=25 652。

    在回文数中平方数是非常多的,比如121=11(上标2),12 321=111(上标2),1 234 321=1 111(上标2)……一直到12 345 678 987 654 321=111 111111(上标2)。你随意找一些回文数就会发现,平方数所占的比例比较大。

    立方数也有类似情况。比如1 311=11(上标3),1367 631=111(上标3)等等。

    对回文质数的研究虽然取得了一些成绩,发现了一些特性,但是用它们也不能证明“回数猜想”。

    “回数猜想”证明不出来,却没有挡住数学家想象的驰骋,他们又大胆地猜想:回文质数有无穷多个;回文质数对(中间的数字是连续的,而其他数字都相等,如30103和30203)也有无穷多对。但是也没有人能证明这些猜想是对的。扑朔迷离的回文质数又给数学家们出了一个难题。

    普林斯顿322号

    17世纪德国著名科学家开普勒说:“几何学有两个宝藏,一个是勾股定理,一个是黄金分割。”

    勾股定理是人类发现的最早的几何定理之一。1955年希腊发行一张邮票,图案是由3个棋盘排列而成。这张邮票是为了纪念2000多年前古希腊数学家毕达哥拉斯发现勾股定理而发行的。邮票中,把下面的正方形分成了25个小正方形,上面两个正方形,一个分成16个小正方形,另一个分成9个小正方形,每个小正方形的面积都相等。

    9+16=25,也就是说3(上标2)+4(上标2)=5(上标2),这是我们熟悉的“勾三股四弦五”。希腊人说勾股定理是毕达哥拉斯发现的,所以叫“毕达哥拉斯定理”。

    其实,这个定理不单是毕达哥拉斯发现的,在我国的《周髀算经》一书中,就记载了二千多年前我国周代人测太阳高度时,使用了勾股定理的事实。勾股定理用语言叙述是:“在一个直角三角形中,两直角边的平方和等于斜边的平方。”或说成“勾方加股方等于弦方”。勾股定理的逆定理也是对的,即在一个三角形中,如果有两条边的平方和等于第三边的平方,那么第三边所对应的角必定是直角。这个逆定理也早就被古埃及人发现了,他们利用这个定理来做直角,建造了举世闻名的大金字塔。

    古巴比伦与中国、希腊、埃及并称为四大文明古国,但是古巴比伦已经消亡。对古巴比伦人的了解,主要来源于刻在泥板上的楔形文字。他们用木笔将文字和数字刻在泥板上,由于笔画像楔子,所以叫楔形文字。从19世纪开始,考古学家在古巴比伦的遗址上发掘出50万块泥板,几乎世界上一些大的博物馆都有收藏。在这50万块泥板中大约有三百块是专门讲数学的。从这些泥板中我们了解到三千多年前的古巴比伦有很高的数学水平。

    哥伦比亚大学普林斯顿收集馆的第322号收藏品,就是一块古巴比伦泥板。这块泥板写于公元前1900年至公元前1600年,距今三千多年了。这块泥板左边掉了一块,右边靠中间有一个很深的缺口,左上角也剥落了一片。通过查验发现,泥板左边破损处有现代胶水的结晶。这表明,这块泥板在挖掘时可能是完整的,后来破了,科学工作者曾试图用胶水把它们黏合在一起,可以后又分开了。碎片也许还在,如果能把碎片找到,一定会引起人们很大的兴趣。

    普林斯顿322号上到底是些什么东西?

    原来它上面有3列数字,用的是古巴比伦的记数方法。这些数是干什么用的?科学家们不得而知。他们想探出个究竟来。

    为了研究方便,数学家把普林斯顿322号上的数全部翻译成阿拉伯数字(见表1)。

    表1

    ┏━━━━━━━┳━━━━━━━━┳━━━━┓

    ┃    119    ┃    169    ┃    1    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    3 367    ┃ 4 825(11 521)┃    2    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    4 601    ┃    6 649    ┃    3    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    12709    ┃    18 541    ┃    4    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    65    ┃    97    ┃    5    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    319    ┃    481    ┃    6    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    2 291    ┃    3 541    ┃    7    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    799    ┃    1 249    ┃    8    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    481(541) ┃    769    ┃    9    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    4 961    ┃    8 161    ┃    10    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    45    ┃    75    ┃    11    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    1 679    ┃    2 929    ┃    12    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃ 161(25 921)┃    289    ┃    13    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    1771    ┃    3 229    ┃    14    ┃

    ┣━━━━━━━╋━━━━━━━━╋━━━━┫

    ┃    56    ┃    106(53)    ┃    15    ┃

    ┗━━━━━━━┻━━━━━━━━┻━━━━┛

    再看这些数,很明显靠右边的那一列是用来表示行数的。而另外两列数,好像杂乱无章,没什么意义。古巴比伦人写这些数到底要说明什么?毫无边际地从杂乱的数中找规律太难了。

    数学家不甘心,经过认真研究以后,惊喜地发现:两列中的对应数字,恰好都是边长为整数的直角三角形的斜边和一条直角边,只有4个例外。数学家对4个例外数进行了修正,表1中把原来不正确的数字写在括号里了。

    这是解开普林斯顿322号之谜的巨大发现。

    数学家再接再厉,又利用勾股定理,假定普林顿322号给出的是直角边b和斜边c,算出另一条直角边a来。并列了一个相应的表(见表2)。

    表2

    ┏━━━━━━━━━━━━━━━┳━━━━┳━━━━┓

    ┃    a    b    c    ┃    u    ┃    v    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    120    119    169    ┃    12    ┃    5    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    3 456    3 367    4 825    ┃    64    ┃    27    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    4 800    4 601    6 649    ┃    75    ┃    32    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    13 500    12 709    18 541    ┃    125 ┃    54    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    72    65    97    ┃    9    ┃    4    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    360    319 481    ┃    20    ┃    9    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    2 700    2 291    3 541    ┃    54    ┃    25    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    960    799    1 249    ┃    32    ┃    15    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    600    481    769    ┃    25    ┃    12    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    6 480    4961    8 161    ┃    81    ┃    40    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    60    45    75    ┃    2    ┃    1    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    2 400    16.79    2 929 ┃    48    ┃    25    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    240    161 289    ┃    15    ┃    8    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    2 700    1 771    3229    ┃    50    ┃    27    ┃

    ┣━━━━━━━━━━━━━━━╋━━━━╋━━━━┫

    ┃    90    56    106    ┃    9    ┃    5    ┃

    ┗━━━━━━━━━━━━━━━┻━━━━┻━━━━┛

    数学家进一步研究发现,表中所列的勾股数,除第十一行的60、45、75;第十五行的90、56、106外,都是素勾股数。

    什么是素勾股数呢?

    如果一组勾股数中,除了1以外,没有其他公因子,这组勾股数就称为素勾股数。比如3、4、5是素勾股数,而6、8、10就不是素勾股数。上面我们给出了求勾股数的公式,为了方便地说明普林斯顿322号,不妨将公式稍加改变就得到求素勾股数的公式:

    2=2uv,b=u(上标2)-v(上标2),c=u(上标2)+v(上标2)

    其中u和v互质,奇偶不同,并且u>v。比如u=2,v=1就满足互质、u是偶数、v为奇数、u>v的条件,将它们代入公式得:

    a=2×2×1=4,b=2(上标2)-1(上标2)=3,c=2(上标2)+1(上标2)=5,即3、4、5为一组素勾股数。

    数学家算出来普林斯顿322号的u和v,并列在表2的右侧。

    这个发现令人震惊,难道在三千多年前,古巴比伦人就找到了求素勾股数的一般方法了?难道说这些数就是他们研究成果的记载?如果不是,所列为什么大部分都是素勾股数?

    从目前的研究来看,谁也下不了结论。

    二千多年前,中国人和希腊人发现了勾股定理,已经属于数学史上的伟大创举,如果巴比伦人真的在更早的时间就找到了素勾股数,那将是更伟大的事情。因为用现代数学家的眼光来看,找素勾股数是一件很困难的事!要想揭开普林斯顿322号之谜,恐怕只好依赖对巴比伦遗址的进一步发掘。

    数字“冰雹”

    让我们先来做一个游戏:

    你随便取一个自然数,如果它是偶数,就用2去除它;如果它是奇数,将它乘3之后再加1,这样反复运算,你会发现,最终必然得1。

    比如,取自然数N=6。6是偶数,要先用2除,6÷2=3;3是奇数,要将它乘3之后再加1,3×3+1=10;按照上述法则续往下做:10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1。从6开始经历了3→10→5→16→8→4→2→1,最后得1。

    用—个大一点的数运算,结果还是这样吗?取自然数N=16384。你会发现这个数连续用2除了14次,最后还是得1。

    上面用的两个数都是偶数,奇数是不是这样的呢?

    取自然数N=19。按照上面的法则来算,可以得到下面一串数字:

    19→58→29→88→44→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1。

    经过20步,最终也变为最小的自然数1。

    这个有趣的现象引起了许多数学爱好者的兴趣。一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题。数学系和计算机系的大学生,差不多人人都在研究它。”人们通过大量演算发现最后结果总是得1。于是,数学家便提出如下一个猜想:

    对于任一个自然数N,如果N是偶数,就把它变成N/2;如果N是奇数,就把它变成3N+1。按照这个法则运算下去,最终必然得1。

    这个猜想最初是由哪位数学家提出来的,已经搞不清楚了,但似乎并不古老。20世纪30年代,德国汉堡大学的学生考拉兹就研究过它。1952年一位英国数学家独立发现了它。几年之后它又被一位美国数学家所发现。自世纪50年代起,这个问题一再引起人们的广泛兴趣。

    在日本,这个问题最早是由角谷静夫介绍到日本的,所以日本人称它为“角谷猜想”。1960年角谷静夫初次听到这个问题,他说:“有一个月,耶鲁大学每一个人都在研究这个问题,但没有任何结果。我到芝加哥大学提出这个问题之后,也出现了同样现象。有人开玩笑说,这个问题是企图减缓美国数学进展的一个阴谋。”足见这个问题的吸引力之大。

    人们争先恐后地去研究这个猜想,一遍遍地进行运算,在运算过程中发现,算出来的数字忽大忽小,有的计算过程很长。比如从27算到1,需要112步。有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷结冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉了下来,变成了1。因此人们又给这个猜想起了个形象的名字——冰雹猜想。诱人的“数字冰雹”把研究者的热情一点点地变冷了,很多人退了出来,仍在坚持研究的人,至今还是证明不出来。这一串串数难道一点规律也没有吗?

    有。研究者惊喜地发现,每串数的最后3个数都是4→2→1。

    为了验证这个事实,从1开始算一下:

    3×1+1=4,4÷2=2,2÷2=1。结果是从1→4→2→1转了一个小循环又回到了1。不论从哪个自然数开始,经过漫长的历程,几十步、几百步、几千步,最终都要掉进1→4→2→1这个循环中去。有的数学家开玩笑说,1→4→2→1是个“数字陷阱”,掉进去就别想出来!

    日本东京大学的米田信夫对2(上标40)(大约相当于1.2万亿)以下所有的自然数在电子计算机中逐一进行了验算,最后无一例外地都以1→4→2→1结束。

    虽然人们对大量的自然数做了验算,但是“大量”并不能代替“全体”,要知道自然数有无穷多个,靠验算是验算不完的,必然找出一般规律(数学上常常用公式表示)。也许1→4→2→1这个“陷阱”能成为解决该问题的突破口。

    现代数学趣题

    1.自行车和苍蝇

    两个男孩各骑一辆自行车,从相距20千米的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车迳直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。

    如果每辆自行车都以每小时10千米的高速前进,苍蝇以每小时15千米的高速飞行,那么,苍蝇总共飞行了多少千米?

    答案

    每辆自行车运动的速度是每小时10千米,两者将在1小时后相遇于20千米距离的中点。苍蝇飞行的速度是每小时15千米,因此在1小时中,它总共飞行了15千米。

    许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。

    据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼提出这个问题,他思索片刻便给出正确的答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。

    冯·诺伊曼脸上露出惊奇的神色。“可是,我用的正是无穷级数求和的方法”,他解释道。

    2.一圈硬币

    这种游戏的玩法是,取任意数目的筹码(可以是硬币、棋子、石子或小纸片等),把它们摆成一个圆圈。两位游戏者轮流从中取走一枚或两枚筹码,但如果是取走两枚筹码,这两枚筹码必须相邻,即它们中间既无其他筹码,也无取走筹码后留下的空当。谁取走最后一枚筹码谁胜。

    如果双方都玩得有理,谁肯定能获胜?他应该采用什么样的策略?

    答案

    后手如果采用下述的两步策略,他就总能获得这个游戏的胜利:

    (1)当先手取走一枚或两步策略,圆圈的某一个位置将出现单独的空当。于是,后手从圆圈中与这个空当相对的一侧取走一枚或两枚筹码,使得余下的筹码被两个空当分成数目相等的两群。

    (2)从这往后,无论先手从哪一群中取走一枚或两枚筹码,后手总是相应地从另一群中取走相同数量的筹码。

    如果你实践一下下面给出的游戏过程的例子,就可以明白这种策略。这里的数字是圆圈中筹码依次的编号。

    先手    后手

    8    3

    1,2    5,4

    7    9

    6    10(胜)

    试用这种策略对付你的朋友,你很快就会发现,为什么无论用多少筹码摆成圆圈,后手总能立于不败之地。

    3.三枚硬币

    乔:“我向空中扔3枚硬币。如果它们落地后全是正面朝上,我就给你10美分。如果它们全是反面朝上,我也给你10美分。但是,如果它们落地时是其他情况,你得给我5美分。”

    吉姆:“让我考虑一分钟。至少有两枚硬币必定情况相同,因为如果有两枚硬币情况不同,则第三枚一定会与这两枚硬币之一情况相同。而如果两枚情况相同,则第三枚不是与这两枚情况相同,就是与它们情况不同。第三枚与其他两枚情况相同或情况不同。第三枚与其他两枚情况相同或情况不同的可能性是一样的。因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的。但是乔是以10美分对我的5美分来赌它们的不完全相同,这分明对我有利。好吧,乔,我打这个赌!”

    吉姆接受这样的打赌是明智的吗?

    答案

    吉姆打这个赌是不太明智的。他的上述推理是完全错误的。

    为了弄清3枚硬币落地时情况完全相同或不完全相同的可能性。我们必须首先列出3枚硬币落地时的所有可能的式样。总共有8种式样。

    每种式样出现的可能性都与其他式样相同。注意只有两种式样是3枚硬币情况安全相同。这意味着,3枚硬币情况完全不同的可能性是八中有二,即2/8,可简化为1/4。

    3枚硬币落地时情况不完全相同的式样有6种。因此其可能性是6/8,即3/4。

    换句话说,乔的打算是,从长远的观点看,他每扔4次硬币就会赢3次。他赢的3次,吉姆总共要付给他15美分。吉姆赢的那一次,他付给吉姆10美分。这样每扔4次硬币,乔就获利5美分——如果他们反复打这个赌,乔就有相当可观的赢利。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架