有生命之物就是生物。生物具有多样性,有记载的生物有200多万种或更多,小至病毒、细菌、单细胞生物,大至大型哺乳动物和高大的种子植物,它们在形态结构、生理、生态等方面千差万别,但有其共同的属性。生命的基本特征可以归纳为以下几个方面:
化学成分的同一性
尽管生物的大小和形态结构各异,但其所含的化学元素却十分相近,都含有组成有机物的碳、氢、氧、氮、磷、硫等非金属元素,以及在生命活动中起着重要作用的钾、钠、韩、镁等金属元素。各类生物中除含多种无机物外,都含有蛋白质、脱氧核糖核酸(DNA)和核糖核酸(RNA)、脂类、糖类、维生素等有机分子。核酸和蛋白质等生物大分子在不同生物中有着不同的组成,但令人惊奇的是,从病毒、细菌到高等动物和植物,构成各种蛋白质的结构单位都不外乎20种氨基酸,构成核酸的结构单位核苷酸也不过8种。DNA(有时是RNA)是一切已知生物的遗传物质,甚至连DNA上所携带的遗传密码在各类不同的生物中都是通用的,这也正是转基因技术能够在不同类别的生物之间广泛应用的重要基础之一。
有序的结构
生物体的结构基础就是细胞,生物有机体并非是用各种不同的有机的和无机的分子随机堆积而成的,而是有着严整有序的结构。生物体的结构基础就是细胞,已知的所有生物除了病毒之外都是由细胞组成的。细胞不仅是生物体的结构单位,更是其功能单位。有了细胞,就如同将有机体进行了功能分区,不同类型的组织中的细胞执行不同功能。而细胞中的细胞器(如内质网、高尔基体、线粒体、叶绿体等)又用生物膜进一步地将细胞分为功能亚区。功能分区使得生命活动能够有序地进行,失去了这种有序性生命就将完结。执行同一功能的细胞组成了组织,由不同组织又构成器官,再由器官组成个体。自然界中每一物种的个体并非单独存在的,在个体之上还有种群、群落等不同层次的生命结构形式。
新陈代谢
细胞及有机体是高度有序的结构,但一个系统中的自发过程总是向着无序化即熵增方向进行。熵增对生物体来讲意味着向死亡发展。细胞和有机体是和外界环境联系紧密的开放系统,它们不断地与外界进行着物质和能量交换。生物体从环境中吸收日光或含自由能的有机物,而将热和含自由能较少的代谢废物送回环境,通过使环境中熵增加来使自身熵减以抵消体内的熵增。
新陈代谢就是维持生物体的生长、繁殖、运动等生命活动过程中的化学变化的总称。生物体不断地从外界吸收物质,使之在体内发生一系列变化后又将最终产物排出体外。生物体将从食物中摄取的养料转换成自身的组成物质并储存能量,称为同化作用或组成代谢;生物体将自身的组成物质分解以释放能量或排出体外,称为异化作用或分解代谢。只要生命没有终结,新陈代谢就会进行。
生长和繁殖
生物体在新陈代谢的过程中成长。生长,是生物的又一重要特性。一方面,每一细胞从产生开始要经历一系列发育过程,另一方面,生物体的生长通常要靠细胞的分裂、增长而得以实现。多细胞生物的受精卵经过反反复复的细胞分裂过程变成一个幼小的个体,而后又不断地长大成为成熟的个体。生物都产生后代。所有生物都有产生后代、使之得以世世代代不断延续的能力。每一个细胞、每一个个体在一步步地发育走向成熟后,又总会一步步地走向衰亡。但生物可以通过有性或无性的过程产生具有与自身部分相同或者完全相同的特征的新一代个体。生物体可以繁殖后代而使生命得以延续下去。
遗传、进化和适应
生物不仅能繁殖出其后代,亲代的各种性状还可以在子代中得到重现,这种现象就是遗传。但亲代与子代之间、子代的个体与个体之间各种性状的改变也时有发生,这就是变异。生物的遗传是由基因决定的,而基因就是DNA上的片断。基因的改变(基因突变)或基因组合的改变(基因重组)都会导致生物体表型的变异。生物为了其自身的生存还表现了对外界环境的适应性,反过来环境对生物又有选择作用,使有利的基因或基因型在生物的种群中得以保留并且遗传下去,这也就是自然选择。变异,加上选择压力的作用就导致地球上的生物在从诞生至现在的这一个漫长时期之中不断地发展,发生一系列不可逆转的演变,这个过程就是进化。
2.生命的物质基础是什么
生物体的元素组成
不同生物或同一生物的不同细胞中各种元素的含量是不同的,但碳、氢、氮、氧这4种元素是必需的且大量存在。碳原子构成各种生物大分子的碳链骨架,作用尤为重要;氢和氧几乎存在于一切生物大分子中;氮元素则是构成蛋白质和核酸所必需的成分。
生物体内的元素按含量可分为常量元素和微量元素,按在细胞中的作用可分为必需元素和非必需元素。除上述4种元素外,硫、磷、氯、钙、钾、钠、镁等也是生物体内必需的常量元素。
生物体的分子组成
(1)水和无机盐
生命是在原始海洋中孕育的,水对生命的意义十分重要。水是生命的介质,它存在于细胞内,也存在于细胞与细胞之间。细胞中无机盐一般是以离子状态存在。
(2)糖类
糖类常被称为碳水化合物,是由碳、氢、氧三种元素构成的有机化合物,这三种元素的比例一般为1:2:1。在生物体内,糖既是能源,又是代谢过程的中间产物,某些糖还是构成其他重要生物大分子(如糖蛋白)的成分。生物体内的糖主要有单糖、寡糖和多糖。
(3)脂类
组成脂类的主要元素也是碳、氢、氧(有时含有磷、氮),但与糖类不同的是,脂类分子中氢与氧之比例远大于2。脂类是非极性物质,它们不溶于水,能溶于非极性溶剂。脂类在生物体内也有一系列重要功能:其一,磷脂是构成生物膜结构的基础;其二,脂肪含较髙能量,因而是储能物质;其三,蜡质等可以作为保护层,起保水、保温和绝缘等作用;其四,维生素、激素等重要的生物活性物质按其理化性质也可归为脂类中。生物体所含有的脂类主要有:脂肪和油、蜡、磷脂类、类固醇和萜类。
(4)蛋白质
蛋白质是由氨基酸构成的生物大分子。生物体内的蛋白是基因表达的结果,在生命活动中起十分重要的功能:
氨基酸为蛋白质的结构单位,它是一种有机酸,但与羧基相连的碳原子上又连有一个氨基。天然存在于蛋白质中的氨基酸有20种,它们在亲水性、带电性和酸碱性等方面各有不同。蛋白质由数十个至数十万个氨基酸组成,相对分子质量在6000~6000000,每一种蛋白质都会形成其特定的空间结构。
蛋白质是重要的生命物质,但蛋白质分子在重金属盐、酸、碱、尿素及紫外线等的作用下,空间结构会发生严重的改变和破坏导致失活,这就是蛋白质的变性。
(5)核酸
核酸是由多个核苷酸相连而成的多核苷酸分子,分为脱氧核糖核酸(DNA)和核糖核酸(RNA),它们是遗传信息的携带者或传递者。
核苷酸是组成核酸的结构单位,它由戊糖(核糖或脱氧核糖)分子、磷酸分子及含氮的碱基形成。核糖或脱氧核糖与碱基结合成为核苷,核苷再与磷酸结合即形成了核苷酸。构成核苷酸的碱基有两类:
一类为嘌呤,包括腺嘌呤(A)和鸟嘌呤(G);—类为嘧啶,包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
三磷酸腺苷(ATP)
也是一种特殊的核苷酸,它虽然不是核酸的组成单位,却是细胞内的能量携带者,它水解时释放大量自由能并转化为二磷酸腺苷(ADP)和一磷酸腺苷(AMP)。
核糖核酸与脱氧核糖核酸虽然都是由核苷酸组成的长链分子,但它们所含的核糖和碱基各有不同。核糖核酸(RNA),其所含戊糖为核糖,碱基为腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C),一般为单链分子。
脱氧核糖核酸(DNA)
其所含戊糖是脱氧核糖,碱基则为腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。DNA通常由两条长链互以碱基配对(A—T,G—C)相连而成双链分子,呈螺旋状,这就是DNA的双螺旋结构。DNA的双螺旋结构模型是沃森(JamesWatson)和克里克(FrancisCrick)在1953年提出的,DNA双螺旋结构的发现乃是20世纪生物学领域最为重大的发现之一。
生物世界的基本结构
生物世界最富有特色的性质之一是其多层次的结构模式。根据不同的组织水平和逐级结合的关系,可以将生物世界划分为基因、细胞、器官、有机体、种群和群落等6个主要的结构层次。这些层次之间是一种相互依存、相互作用的关系,科学地认识生物世界的谱系结构对于学习和研究生物学有着十分重要的意义。应该看到,沿着这一谱线的任何一个环节都不可能有明显的断裂,有机体不能脱离其种群而长期存在,就如同器官不能够没有它的有机体而作为一个自持的单元。另一方面,不可否认,上一层次的单元是由下一层次的单元结合而成的,但更为重要的是,每一层次之所以能作为一个独特的层次而存在,正是因为其有着其下一层次所没有的特质而不仅仅是其下一层次的简单相加。正如种群之所以作为一个层次存在,就是因为它有着种群内所包含的各个单个的个体所不可能具有的特征,如种群的数量特征、空间特征、遗传特征等。
3.什么是基因
基因的本质——DNA(或RNA)
孟德尔在其所发表的著名的豌豆杂交实验论文中,首先提到控制性状的“遗传因子”这一概念,1909年丹麦遗传学家W.Johansen将孟德尔的遗传因子更名为基因。1910?1925年,美国遗传学家摩尔根利用果蝇作为研究材料,证明基因是在染色体上呈直线排列的遗传单位。1928年,英国细菌学家FrcdrickGriffith进行了著名的肺炎链球菌的转化实验,但直到14年后才由o.Avery用实验证明DNA就是转化源。此后,更多的实验结果都支持DNA就是遗传物质这一观念。德国科学家用烟草花叶病毒为材料进行实验,发现在一些不具有DNA的病毒中,RNA是遗传物质。1957年S.Benzer用大肠杆菌T4噬菌体为材料,在DNA分子结构的水平上,通过互补实验分析了基因内部的精细结构,证明基因是DNA分子上的一个特定区域,其功能是独立的遗传单位。
DNA复制是遗传的基础。DNA能够作为遗传信息的载体,并能在细胞的增殖和有机体的繁殖过程中保持遗传物质的稳定性,它本身准确复制十分必要。在合成DNA时,决定其结构特异性的遗传信息只能来自其本身,因此必须用原来存在的分子作为模板来合成新的分子,DNA的双链结构对于维持遗传的稳定性和复制都是极为重要的。DNA的复制是在细胞分裂的间期进行的,采取的是一种半保留复制方式,这就是说,并非是从原来的DNA分子上产生一个全新的DNA分子,而是DNA之双链经过解螺旋过程而分开,每一条链作为一个模板通过碱基配对的方式而配上一条新链。这样形成的两个DNA分子,每个都有一条旧的链和一条新的链。DNA的半保留复制正是维持遗传物质稳定的有利因素之一,这与其遗传功能是相符合的。但遗传物质的稳定性也并非绝对的,配对的误差、DNA分子的损伤以及基因突变等都有一定的发生频率。
基因的表达
虽然DNA携带着基因并可以遗传,但细胞中的一切生化反应都要在酶的催化下才得以完成,而酶是蛋白质。基因只有表达为蛋白质,才能发挥其作用。过去,曾有“一个基因一个酶”或“一个基因一个蛋白质”的说法,但实际上是“一个基因一条肽链”,而一个酶或一个蛋白质可以是由几个基因决定的。而由基因到肽链的过程包括转录和翻译两个过程。
一个基因是编码一条多肽链或功能RNA所必需的全部核苷酸序列,它不仅包含编码多肽链或RNA的序列,还包括保证转录必需的调控序列,以及位于编码区上游的非编码序列、内含子和位于编码区下游的非编码序列。基因的种类较多,至少包括3种类型:一是结构基因和调节基因,都可以翻译为多肽,而调节基因更可调控其他基因的活性;二是rRNA基因和tRNAA基因,这两类基因只转录为相应的RNA,而不翻译为多肽;三是启动子和操纵基因,前者是转录时RNA聚合酶与DNA的结合部位,后者是调节基因的产物与DNA的结合部位,它们并不转录,确切地说不应称为基因。
把DNA分子所携带的遗传信息准确无误地转移到RNA中的过程称为“转录”。各种RNA分子都是从DNA转录而来的,而携带蛋白质合成信息的RNA为信使RNA(mRNA)。转录过程也要经过DNA解螺旋及碱基配对的过程,但与DNA分子的复制过程不同的是,从DNA双链分子转录为RNA的过程是全保留式的,即转录的结果是产生一段单链的RNA分子,而DNA却仍保持原来的双链结构。
从DNA上直接转录下来RNA链还要经过一些修饰,切去不编码氨基酸的部分,再把编码氨基酸的部分拼接起来,才成为mRNA。
mRNA的碱基顺序决定了蛋白质的氨基酸序列的顺序,依照mRNA的碱基顺序所携带的遗传密码合成蛋白质的过程就称为“翻译”。RNA分子上有4种碱基,而组成蛋白质的氨基酸有20种,在RNA分子上的3个相连的碱基决定一个蛋白质分子的一个氨基酸,这就是三联体密码。1957年,这种编码方式被M.Nirenberg和S.Ochoa用实验证实,此后,20种氨基酸的三联体密码全部得到破解并被证明在所有的生物中都是通用的。而细胞内蛋白质的合成要依靠一种细胞器——核糖体,核糖体“阅读”mRNA的遗传密码后,由另一种RNA——转移RNA(tRNA)携带各种不同的氨基酸并依次连接成肽链。
基因并不是一成不变的,有时候基因会发生突变。基因突变是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。
例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。
基因突变的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后夭折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异,甚至可能给个体的生存带来一定的好处。
4.基因工程是怎么开始的
孟德尔提出的基因决定性状,经过100余年的研究,巳经演绎为DNA决定蛋白质。三体密码的概念,又具体生动地说明了DNA中的核苷酸与组成蛋白质的氨基酸的关系。但是,细胞学所揭示的事实是这样的:DNA主要存在于细胞核中,而蛋白质主要存在于细胞质中,另外,由氨基酸合成蛋白质是在细胞质内进行的,而且DNA这种大分子不能随意进人细胞质。根据这种事实,法国的生物化学家雅各布和莫诺首先提出“位于细胞核内的DNA怎样决定蛋白质的合成”,或者说“锁在档案室中的密码如何把密码所记载的信息传递出去呢?”
在提出问题时巳经在思考答案了。他们做出这样的推理:
“档案室里的密码虽不能外借,但一定是可以翻录的,而翻录带一定可以带出档案室。”那么,细胞核里除了DNA外,有没有结构与DNA相似又能从细胞核内进人细胞质的物质呢?有,那就是核糖核酸(RNA)。RNA的结构与DNA十分相似,因为RNA也是由核苷酸连接而成的长链,这种长链也确实是按照DNA的模子,像DNA半保留复制那样形成的。即在细胞核内生命的DNA,首先双链拆成单链,然后在DNA单链的鸟嘌呤(G)处,连上一个胞嘧啶(C),在腺嘌呤(A)的地方,接上一个尿嘧啶(U),这样形成的一条新链就是RNA。由此可见,RNA与DNA相比,在碱基的种类上只是由尿嘧啶代替了DNA链中的胸腺嘧啶。此外,RNA的糖是核糖,DNA是去(脱)氧核糖,DNA是双链,RNA是单链。照着细胞核内DNA的样子,由4种核苷酸连成RNA长链,叫做转录(或翻录),可想而知,RNA是带着DNA的信息的,意思是说DNA中碱基的相互连接情况也反映在RNA的结构上,例如DNA—条链上组成密码的碱基如果是一AAC-CGG—,那么,由此链转录成的RNA链,碱基的排列为一U-UGGCC—。这种RNA长链由于带着DNA链上的信息,因此叫做信使RNA(mRNA)cmRNA能从细胞核内进人细胞质。但是,根据罗马尼亚血统的美国生物化学家帕拉德1956年用电子显微镜观察的结果,进人细胞质的mRNA是与细胞质中的小颗粒结合在一起的,这个小颗粒叫核糖体。细胞里的蛋白质都是在这个小颗粒里合成的,因此,可以说,核糖体是细胞中合成蛋白质的车间。
美国另一位化学家霍格兰在研究细胞质中的RNA时,又发现了一种相对分子质量比mRNA小得多的RNA,后来证明,这种RNA—端能与某种特定的氨基酸结合,另一端有三个碱基组成的一个密码子,这个密码子能与mRNA相应的密码子结合,为了与mRNA上的密码子区别起见,特把这种能与氨基酸相结合的相对分子质量较小的RNA上的密码子叫“反密码子”。
实际上,这种RNA是专门“搬运”氨基酸的,所以也叫搬运RNA(tRNA)。
由于对DNA转录为RNA的研究和发现了细胞质中合成蛋白质的车间以及搬运RNA,最终阐明了DNA、RNA和蛋白质三者的关系。这三者是密切相连的,DNA上由碱基排列顺序组成的信息,先传给mRNA,再由mRNA指导蛋白质的合成。套句时髦的话说,遗传信息由DNA流向RNA,再由RNA流向蛋白质的过程,就是遗传学中的中心法则。
克里克提出的“三体密码”虽然赢得一片赞美声,但那个“密码子”代表着哪个具体氨基酸呢?这个问题吸引着一大批科学家。
1961年,美国生物学家尼伦伯格和马太合成了由许多“尿核苷酸”连结成的长链,称为“多聚尿苷酸(U—U—U—U……)”,他们把这条人工合成的长链加人含有多种氨基酸、酶、核糖体和一些合成蛋白质所需要的其他物质的溶液中。这种溶液中形成了一条只有苯丙氨酸连接而成的多肽链,这样,尼伦伯格和马太就确认苯丙氨酸的三联体密码是U—U—U。
接着尼伦伯格和奥乔亚联手进行了比第一次稍复杂的试验。首先,他们用“尿苷酸”和“腺苷酸”(A)两种核苷酸合成一条多苷酸,这条多核苷酸链中,除UUU外,当然还会有UUA、AUU、UAU等多种三联体出现。当他们把这条多核苷酸加进具有合成蛋白质一切必要物质的溶液中时,多肽链也在溶液中出现,可在这条多肽链中除苯丙氨酸外,还有亮氨酸、异亮氨酸和酪氨酸。
就是这样一步步地分析,到1967年,才写出了廿余种氨基酸的密码子,此外也发现了有些密码子另外还代表着起始、终止和标点。
DNA中核苷酸组合成的密码被破译,是一个世纪以来生命科学中最令人激动的巨大成就,但是这并不等于生命世界再也没有任何秘密。实际上,在密码被破译的时候,密码中之密码又在等待着人们去探索。
1968年,布里顿等人在用蛙和蝾螈作实验材料时,发现这些真核生物的DNA中,与大肠杆菌等原核生物不同之外是某一段上会出现同样核苷酸的重复,如某一段DNA上可能全是AAAA或ACACACAC或三个、四个等核苷酸重复,重复的次数可成千上万甚至百万。至于为什么会有这些重复,至今是一个未解之谜。
1971年,美国微生物学家内森斯和史密斯在细胞中发现了一种“限制性核酸内切酶”,这种酶能在DNA上核苷酸的特定连接处以特定的方式把DNA双链切开。此外,他们又发现了另一种“DNA连接酶”,这种酶能把二股DNA重新连接起来,从而为干预生物体的遗传物质,改造生物体的遗传特性,直至创造新生命的类型奠定了物质基础。在这样的科学背景下,基因工程应运而生了。
5.什么是人类基因组计划
HGP概述
人类基因组计划(humangenomeproject,HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。
(1)什么是基因组(Genome)
基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。
(2)为什么选^择人类的基因组进行研究
因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身,掌握生老病死规律,疾病的诊断和治疗,了解生命的起源。
在人类基因组计划中,还包括对五种生物基因组的研究:
大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。
HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象,为疾病的诊治提供科学依据。
基因组DNA测序是人类对自身基因组认识的第一步。随着测序的完成,功能基因组学研究成为研究的主流,它从基因组信息与外界环境相互作用的高度,阐明基因组的功能。功能基因组学的研究内容:人类基因组DNA序列变异性研究、基因组表达调控的研究、模式生物体的研究和生物信息学的研究等。
基因组也涉及伦理学问题有关问题:
①“基因是人类的共同财产”还是“人类基因组实际上是个人的”。
②基因有无好坏之分?“致病基因”还是“必备基因”。
③致病基因携带者都是病人吗?
④能不能用于优生?
⑤是否必须进行基因检查?
HGP伦理、法律和社会影响研究带来的隐私问题①利用和解释遗传信息时如何保护隐私和达到公正?
②如何处理“知情同意”等问题?
③如何保护隐私?
人类基因组图谱公布后将会带来一系列的政策问题。其中最重要的是如何平衡隐私和基因组公平使用之间的关系。尽管美国的法律规定在医疗保险中不得含有任何歧视,但以后如何更有效的实施仍需要进一步的调查与研究。另外,保护厂家和研究单位进行遗传实验的政策也需要尽快出台。每个国家都应该明确哪些遗传信息应该被保护,哪些可以使用以及如何使用。
防止“遗传歧视”,保护个人和家庭基因隐私被发现的基因序列,一旦经过分离或者纯化后就成为一种新产品。
人类基因组DNA序列是全人类的共同遗产,应该由全人类所共享;对基因组基础数据的垄断,将给人类利益和科学发展带来不良后果。
6.你了解细脃吗
细胞的大小和形状
细胞是生物有机体的基本结构单位。目前已知的最小细胞为支原体,直径0.1微米,最大的为鸟类卵细胞,直径可达150毫米,植物中纤维细胞最长的可达100毫米。大多数细胞直径在10?100微米,需要借助于显微镜方能观察到。
不同的生物体所含的细胞数目各有不同。单细胞生物(原生生物)的每一个体仅有一个细胞。据估计,个体最大的多细胞生物的每一个体所含细胞可达1015个。
在各类生物或在同一生物的不同部位的细胞形状变化极大。一般说来,单个的或者游离的细胞多为球状、接近球状或其他不规则形态,结构致密的组织中细胞常为多面体或其他形态如纤维状、柱状、片状等。
细胞有两种主要类型:原核细胞与真核细胞。细菌和蓝藻都是原核细胞,细胞内的遗传物质(DNA)没有以核膜包围而形成细胞核,细胞中的其他部分也相对简单。大多数生物的细胞都是真核细胞,其结构包括如下几部分:
(1)细胞膜和细胞壁
细胞膜:也称为质膜,它位于原生质体表面,厚度7?8纳米,为单层的生物膜。生物膜的机构基础是具流动性的磷脂双分子层,蛋白质镶嵌在磷脂双分子层的中间或表面。细胞膜具选择性透性,可以控制物质进出细胞。细胞膜上有负责细胞内外物质转运的蛋白质分子,细胞膜的表面则携带有作为细胞识别的分子及某些生物活性物质如激素等的受体。
细胞壁:它是植物、细菌、真菌等所具有的细胞结构。植物细胞壁的主要成分为纤维素及半纤维素,次生加厚的细胞壁则有木质、栓质等成分;两相邻细胞壁之间为胞间层,主要成分是果胶质;相邻细胞壁间有小孔并有胞间连丝(原生质丝)穿过。细菌、真菌等虽然也有细胞壁,但其中不含纤维素成分。
(2)细胞核
细胞核是真核生物细胞中的结构,它是由核被膜将核物质包裹起来而形成的,遗传物质就主要存在于细胞核中。细胞核在细胞壁中占有显著位置,可以将其认为是细胞中最大和最重要的细胞器。大多数细胞只有一个细胞核,也有多核细胞。原核生物虽然也有核物质,但不具备细胞核这一结构。细胞核包括以下几部分:核被膜是核的外层,包括核膜和核纤层。核膜为双层的单位膜结构,两层膜间有宽10~50纳米的核周腔;外膜上常附有核糖体并与内质网相连;膜上有核孔。核膜与核孔对物质进出细胞核起选择和调控作用。核纤层位于核膜内,成分为纤维蛋白,在细胞分裂过程中对分裂形成的子细胞的核膜的重新组装起重要作用。
染色质是核被膜内的主要部分,真核细胞的染色质的成分为DNA和蛋白质及少量RNA。经苏木精染色后在光学显微镜下可见它在核内呈丝状交织并有染色更深的团块。丝状者为常染色质,是DNA长链分子的伸展部分;团块状者为异染色质,是DNA长链分子紧缩盘绕而成。细胞分裂时,染色质丝收缩为光学显微镜下更为明显可见的染色体。
在光学显微镜下核内有折光更为强烈的区域(染色后更为明显),这就是核仁。它是由某一个或几个特定染色体的核仁组织区及蛋白质和RNA(核糖体RNA,即rRNA)分子构成的,核仁组织区内的一部分DNA即转录rRNA的基因c细胞核内还有由蛋白质构成的网状的核基质,它是支持染色质的结构,核基质网孔中还充满液体。
(3)细胞质和细胞器
细胞质是细胞膜内除细胞核外的部分,包括胞质溶胶和多种细胞器。胞质溶胶为透明、黏稠状,具胶体性质而且呈流动状态,汇集了细胞中25%~50%的蛋白质,含有多种酶,是代谢活动的主要场所之一。细胞质中还常有储藏物质,如植物胚乳细胞中的淀粉粒、糊粉粒(蛋白质的储存形式)和动物肝脏细胞中的糖原等。细胞器是存在于细胞质中的微小结构,通常只有借助于电子显微镜下才能看清其结构。细胞中的细胞器一部分是由生物膜围成的结构,另一部分则是非膜结构。
有膜结构的细胞器主要有内质网、高尔基体、线粒体、质体、溶酶体、液泡。
非膜结构的细胞器主要有核糖体、微管和微丝。
细胞的分裂
细胞是在地球由非生命世界向生命世界演变的过程中由生物大分子逐渐形成的一种多分子体系,这种演变是在特定的气候条件下发生的,现今地球上自然条件下可能巳不再具备由生;物大分子直接组装为细胞的条件。因此,早在1858年德国细胞学家R.Virchow就提出有这样一个著名的论断:“细胞来自细胞。”
生物有机体中总有一部分细胞走向衰亡,而又有一部分新的细胞产生。产生新的细胞的方式只能是细胞分裂,细胞分裂是生长、发育和繁殖的基础。
细胞的分裂总是一分为二的,但经过一个又一个生活周期(从受精卵发育为成熟个体,再产生精子和卵,经过受精作用又形成下一代的受精卵)后必须维持核物质的稳定,因此,每一次细胞分裂前细胞内都会有一个DNA复制过程。
细胞分裂有两种类型:有丝分裂和减数分裂。有丝分裂是在有机体的整个生活周期中尤其是在营养生长过程中出现的一种分裂方式,在分裂间期中细胞核中DNA复制一次,细胞分裂时DNA长链反复缠绕、紧缩为一条条染色体(每条染色体含两条相同的染色单体),在由微管组成的纺锤丝的牵引下每条染色体的两条染色单体被分配到两个子细胞中,而后染色体又变回染色质丝并恢复细胞核的形态。经过一个细胞周期后,细胞中无论染色体数目还是核物质的总量都维持不变。
减数分裂总是伴随着有性生殖过程而发生,通常在配子(精子和卵)或配子体产生前进行,只有少数生物的减数分裂发生在受精作用之后。由于有性生殖过程中必然有受精作用,即精子与卵的细胞融合,这一过程会使核物质和染色体数加倍,因此必须通过减数分裂使染色体减半。减数分裂之前的细胞间期中细胞核中DNA复制一次,但细胞分裂却接连进行两次,因而经过减数分裂后细胞中的染色体减少至分裂前的一半。
7.什么是器官
尽管有数以万计的单细胞生物,如细菌、原生动物和单细胞藻类植物等,生物界中占多数的还是多细胞生物。对单细胞生物而言,并非所有的细胞都执行相同的功能,而是通过细胞分化构成不同的组织,再由几种不同的组织构成器官并形成器官系统。
具有一定的形态结构并执行一定功能的细胞群就是组织。在植物中有分生组织、薄壁组织、保护组织、机械组织、输导组织和分泌组织,在动物中则有上皮组织、结缔组织、肌肉组织和神经组织等。组织虽然是功能单元,无论在植物中还是在动物中它们却都不能构成独立的结构单元,而总是存在于不同的器官中,正如输导组织并不单独存在而是分布于植物的根、茎、叶、花、果实等器官中,而结缔组织在动物体内的各器官中也无处不在。因此,由细胞组成的组织在生物谱系中并不是一个独立的结构层次。
多细胞生物的器官是由不同的组织按照一定方式组成的结构和功能单位。植物的根、茎、叶、花、果实、种子,动物的眼、耳、鼻等感官及心、肝、胃内脏等都是器官,它们不仅各自执行特定的功能,而且各自又都是相对独立的结构单位,是生物谱系中重要的结构层次之一。
8.有机体的含义是什么
生物有机体,又称为个体。除非是在实验条件下,器官是不能脱离其母体而长期地单独生存的。个体由器官组成,而个体却是能在较长时期内单独生存的最小单位。毫无疑问,个体是生物谱系中的基本结构层次之一。
尽管生物有机体大小差异甚大,但是,一棵树,一只鸟,一个人……看上去对个体的区分是轻而易举的。实际上,由于克隆繁殖的存在给个体的界定带来极大的困难。克隆就是用无性的方法得到的遗传上完全一致的生物学单位,基因可以被克隆,细胞可以被克隆,有机体也可以被克隆。如果说哺乳动物的克隆在当今还是生命科学领域的一项引人注目的高新技术,那么,在自然条件下高等植物中本来就较为普遍的存在克隆繁殖现象,正如一株草莓可以通过其匍匐茎繁殖出一株甚至数株新的草莓植株,一株百合可以通过其珠芽用无性的方式繁殖出多个新的百合植株,这类繁殖方式通常也称为“营养繁殖”。
由于克隆繁殖的新的个体所携带的所有的基因与其母体是完全一致的,问题就是,到底应该将形态上相对独立的单位看作是一个个体,还是应该将遗传上一致的所有生物学单位都看作是一个个体?区分形态学的“个体”相对容易,但要真正识别每一个遗传学上的个体却是十分困难的事情。就像区分一株一株的百合相对容易,但如果把遗传基因完全一致的单位全部看作一个个体,要确定哪些百合植株是由同一母株无性繁殖而来则要困难得多。
9.什么是种群
种群也被系统和进化生物学家称为“居群”,或被遗传学家称为“群体”。它是指一"定时间、一定区域内某一生物物种的所有个体总和。
种群虽然是有不同的个体组成的,但它本身也是一个有机的整体。一个种群不单是一个一般意义上的群体的含义,而且是一个具有空间和时间性的实体,它具有5个方面的性质:其一,种群具有一定的结构和组成;其二,种群有其自身的“个体”发育,表现出生长、分化和分工、生存、衰老及死亡等过程;其三,种群有其遗传属性;其四,种群是由作用成相互依存机制的遗传和生态两方面的因素整合起来的;其五,种群也像一个有机体一样,作为一个整体单位而接受其环境的影响,这种影响导致其自身发生变化,而最终又会改变其生境。
种群有其数量特征、空间特征和遗传特征。种群的数量特征包括三个层次,最基本的参数是种群大小和密度,影响种群大小的参数有出生率、死亡率、迁人率和迁出率这四个次级种群特征,而影响次级种群特征的因素又有种群的年龄结构、性比、增长率、遗传组成和分布式样等。种群的空间特征即其空间结构,是指组成种群的个体在空间上的分布及其动态。任何一个个体都有一个最小的空间需求,而任何一个种群所能占据的空间又总是有限的,因此种群的数量特征与空间特征是密切相关的。种群内个体的分布格局可以粗分为随机的、均匀的和聚集的三种类型。所谓随机分布,就是每一个体在种群内的各个点上分布的机会是均等的,同时,某一个体的存在并不影响另一个体的分布。均匀分布是指种群内的各个个体多多少少呈等距离的分布,这种式样往往在由于个体间的竞争导致产生相等的空间间隔的地方可以观察到。聚集分布指种群内个体成群或成团分布,绝大多数情况下种群都是呈现出这种分布型,因为这种分布格局对个体的生长和繁殖都较为有利。种群由同种的个体组成,但这些个体在遗传上却不一定是一致的,它们可能都有自己特定的基因型。种群具有一定的遗传组成,构成一个基因库,其中的每一种基因都有一定的比例,即基因频率,由基因组合成的基因型在种群中也有一定的出现频率,即基因型频率。
此外,种群还有其繁育特征。同一种群内的个体生活在一起,有着更多的相互交配的机会,个体与个体之间有较多的基;因交流,它们彼此依靠血缘纽带紧密地联系着。
种群还与进化过程直接相关。进化,就是亲代种群与子代种群之间相异性的发展。个体可能发生变异,个体的变异却与进化无关,变异如果发展到了种群水平就有可能导致进化。种群作为一个整体来接受外界环境的影响,使自身的数量结构、空间结构或遗传结构发生变化,在一定的时间和空间内,或是走向兴盛,或是走向衰亡,更多的是在不同的交配机制的控制下基因型频率向着特点的方向变化。如果把个体理解为生存的最小单位,那么种群就是进化的最小单位。
10.什么是群落
地球上的生物并非是以一个一个种群而独立存在的,也就是说,并非每个区域只生活着一个种群。只要具备适宜的条件,地球上表面的每一个空间都会挤满生物,而且常常是许多种生物共同生活在一起。虽然由于自然条件不同,生活在各处的生物种类也不会相同,但在任何一个特定的区域内,只要那里的气候、地形及其他自然条件都基本相同,那里就会出现一定的生物组合,即由一定的生物种类所组成的生态功能单位,这个功能单位就是群落。群落是一定空间和时间内的各种生物个体的总和,换句话说,群落就是一定空间和时间内的多种生物种群的复合体。群落可以是指某一时间某一空间中所有生物种群的集合,包括所有的植物、动物和微生物种群,也可以是特指某一时间某一空间某一类生物种群的集合,如植物群落、动物群落和微生物群落。
自然界中的生物群落并不是任意物种的随意组合,生活在同一群落中的各个物种是通过长期的历史发展和自然选择而保存下来的。生活在同一群体中的物种也不是独立的、互不相干的,A
;这些生物彼此之间存在着一定的相互关系或相互作用,如竞争、捕食和共生等,这种相互依存和相互制约的关系使群落内的各物种处于一种动态的稳定之中。群落中的生物彼此之间的相互作用不仅有利于它们各自的生存和繁殖,而且也有利于保持群落的稳定性。
实际上,群落就是各种物种适应环境及彼此相互适应的产物。因此,群落的性质是由组成群落的各种生物对环境条件(如土壤、温度、湿度、光照和营养物质或食物等)的适应性以及这些生物彼此之间的相互关系(如竞争、捕食和共生等)所决定的。
生物群落的基本特征主要有以下几个方面:第一,生物组成的多样性。一个群落总是包含着多种生物物种,其中有植物、动物及微生物,但组成不同群落的物种成分及其多样性水平往往有较大的差异。第二,群落的层次性。不同群落常常具有极不相同的外貌,群落中的个体的物种总是占据不同的空间位置、利用不同的空间资源,这就决定了群落结构的层次性。第三,优势现象。在组成群落的许多物种中只有少数能凭借自己的大小、数量和活力等对群落产生重大影响,这些物种就是优势种,这些物种有高等的生态适应性,其存在往往影响着其他生物的存活和生长。第四,相对数量。群落中各种生物的数量各不相同,表现出在多度、密度、盖度、频度、体积和重量等多个指标上的差异。第五,营养结构。群落中的各种生物在取食关系上各有其特定的位置,而这种取食关系决定着物种和能量的流动方向。
就像有机体的生长和发育一样,生物群落会发生演替。群落演替就是指群落中的一些生物种类逐渐取代另一些生物种类,使得一种类型的群落逐渐演变为另一种群落的过程,这一过程直到出现一个顶极群落才会中止。群落的演替是一个有规律的、有一定方向性的和可以被预测的自然过程。
群落,加上群落的环境就构成了生态系统。生态系统是指在一定空间内生物成分和非生物成分通过物质的循环、能量的流动和信息的传递而互相作用、互相依存所构成的一个有自组能力和自我调控能力的生态学功能单位。地球上存在许多大大小小的生态系统,大至整个生物圈,小至某个池塘等。但正是因为生态系统除生物成分外,还包含有非生物成分,因此通常不把它作为生物世界的一个基本结构层次来理解。
11.你了解第一只克隆羊吗
一个细菌经过20分钟左右就可一分为二;一根葡萄枝切成十段就可能变成十株葡萄;仙人掌切成几块,每块落地就生根;一株草莓依靠它沿地“爬走”的匍匐茎,一年内就能长出数百株草莓苗……凡此种种,都是生物靠自身的一分为二或自身的一小部分的扩大来繁衍后代,这就是无性繁殖。无性繁殖的英文名称叫“Clone”,译音为“克隆”,实际上,英文的“Clone”起源于希腊文“Klone”,原意是用“嫩枝”或“插条”繁殖。时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡来自一个祖先,经过无性繁殖出的一群个体,也叫“克隆”。
这种来自一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。自然界的许多动物,在正常情况下都是依靠父方产生的雄性细胞精子)与母方产生的雌性细胞(卵子)融合(受精)成受精卵(合子),再由受精卵经过一系列细胞分裂长成胚胎,最终形成新的个体,这种依靠父母双方提供性细胞,并经两性细胞融合产生后代的繁殖方法就叫做有性繁殖,但是,如果我们用外科手术将一个胚胎分割成两块,四块、八块……最后通过特殊的方法使一个胚胎长成两个、四个、八个……生物体,这些生物体就是克隆个体,而这两个、四个、八个个体就叫做无性繁殖系(也叫克隆)。
1997年2月,英国苏格兰的爱丁堡新生了-只小绵羊,这只小绵羊成为所有的新闻媒体关注的焦点,报纸、杂志、周刊、电视、电台,甚至互联网都大力宣传报道这只小绵羊,将它的消息放在头版头条。很快,这只芬兰多塞特小绵羊成了蜚声国际的“大明星”。这头名叫“多利”的小绵羊究竟有什么特别之处呢?尽管它看上去和一只普通的小绵羊没什么两样,但它可不是一只简单的小绵羊。多利是一只凝聚了无数科学家心血的“克隆”羊,这就是为什么新闻媒体竞相报道的原因了。
哺乳类动物以及人类体内存在着两类细胞:一类是生殖细胞,另一类是体细胞。在雌性哺乳动物的卵巢内存在着卵原细胞,这种细胞与体细胞并没有什么区别,它具有双倍的遗传物质,生物学家称其为“双倍体细胞”。卵原细胞经过几次分裂以后,最终变成了只含体细胞一半的染色体的成熟卵细胞,即生殖细胞。仅仅有这种卵细胞是不可能发育成为一个新生命的,它必须与含有同样只有单倍染色体的精子细胞结合,重新成为双倍体的受精卵,才能继续发育下去,从而形成一个新生命。这个新生命巳分别带有母体(卵细胞)和父体(精子)各一半的遗传特性。哺乳类动物的这种繁殖方式被称为“有性繁殖”。
制造多利,与“有性繁殖”既有相似之处,也有明显的不同。
按照发育生物学的观点,成年体细胞是一种“定向”了的,一定程度上分化了的细胞。即这种细胞的性质巳经定型,是哪种类型的细胞或组织就是哪种类型的细胞或组织,正如乳腺细胞只能发育成乳腺组织一样,不可能再像胚胎细胞那样获得“全能性”。
然而,多利的克隆成功却说明。即使是体细胞,在一定条件下仍然可以繁殖出个体。
多利的产生未经过精子细胞与卵细胞结合的受精过程,属于无性繁殖,因此称它为“克隆羊”是名副其实的。
威尔穆特博士是如何进行这项试验并一步步走向成功的呢?下面的几大步骤便是他们迈向成功的步骤:
①科学家们先从第一头6岁的芬兰多塞特母绵羊的乳腺中取出一个乳腺细胞,用作无性繁殖,因此,科学家认定这头母羊就是以后诞生的多利的“母体”(注意,不是“母亲”)。
②虽然一个乳腺细胞内含有组成一头绵羊所需的所有基因,但是在各种基因中,只有乳腺细胞所必需的蛋白质基因具有活性,这就是以往众多科学家认为人类不能从一个普通细胞创造出一个高等生物的原因。
③乳腺细胞在实验室控制的环境下生长着、分裂着、复制着自己。但是,如果这些细胞缺少营养,它们便会进人静止状态,而就在此刻,乳腺细胞内的所有基因有可能被激活。
④科学家再利用药物促使第二头苏格兰母绵羊排卵,将这只未受精的卵细胞从母羊体内取出。
⑤这只卵细胞,被放到实验室内一个极细的试管底部存活。
⑥科学家小心翼翼地用另外一种极细的吸管将卵细胞膜刺破,从中吸出含有染色体的细胞核,这样就制成了一个具有活性但没有遗传物质的卵细胞空壳。
⑦乳腺细胞与卵细胞在电流刺激作用下融为一体,组成一个含有新的遗传物质的卵细胞,然后卵细胞内的分子按照乳腺细胞内的基因开始在试管中分裂、繁殖,逐渐形成羊羔胚胎。
⑧羊羔胚胎的细胞簇开始在试管内生长发育。
⑨当胚胎生长到一定程度,科学家将其植人第三头母绵羊的子宫内,使它怀孕,这第三头母绵羊在整个试验中扮演的是“代理母亲”的角色。
⑩由此诞生的羊羔便是由第一只芬兰多塞特母绵羊无性繁殖成功的多利。
我们巳经知道,在多利的诞生过程中,有三只母绵羊做出了贡献。那么,这三只母绵羊是不是都是多利的“母亲”呢?答案是否定的,它们都不是多利的母亲。
从分子生物学的角度讲,作为母亲,它充分而必要的条件是提供给后代一只完整的卵细胞,后代就是在这只卵细胞基础上,再与作为父亲所提供的精子细胞相结合,变成一只受精卵,然后经过细胞分裂才逐渐发育成长起来的。没有一个母绵羊给多利提供过一个完整的卵细胞。第一只芬兰多塞特母绵羊提供的是一个体细胞一乳腺细胞,很明显它不是一个卵细胞,当然不能算作多利的“母亲”,而只能算作多利的“母体”,因为多利身上的遗传基因与它是完全相同的。
第二只苏格兰黑色母绵羊虽然提供了一个卵细胞,但是这只卵细胞却被科学家用极细的试管吸出了含有染色体的细胞核,因此,它只能算是一个卵细胞的空壳,这第二只母绵羊自然也不能算作多利的“母亲”。
第三只母绵羊便只是提供了一个孕育胚胎的场所一子宫,它将多利在自己的体内怀了148天时间,如果要算“母亲”的话,它充其量只能算作“代理母亲”。
多利的生育成功,对克隆技术的商业化具有非常重要的意义。因为当利用复杂的核移植技术培育出少量转基因动物以后,不必再利用克隆方法,完全可以通过像多利那样由正常怀孕、分娩来获得更多性状改良的下一代。
多利于1998年4月13日当地时间凌晨,自然分娩顺利产下了一只母羊羔,这只取名“邦尼”的小母羊体重2.7千克,邦尼的父亲是一只普通的威尔士公山羊。
12.克隆人的主要伦理问题是什么
克隆技术在给人类带来福祉的同时,也可能因被滥用而带来祸害。尤其是是否应该克隆人的问题引发了人们广泛的争议。克隆人技术对单身族、同性恋和不育症治疗失败又渴望要孩子的人们来说,是个好消息,但人的人工繁殖一旦不再受限,自然出生的人的利益会不会受到损害?科学是一把双刃剑,在带给人们好处的同时,也会给人类造成困扰。
有人认为,克隆人可“定做自己”,是有性生殖的一种补充;克隆人可作为器官移植供体来源;克隆人是可促进科学技术的进步。
但持反对意见的人认为克隆人的出现将引发人类道德伦理危机。所有支持克隆人的动机和目的,都存在把克隆人“物化”和“工具化”的问题。
人作为克隆人创造者,往往忽视克隆人也有独特的心理、行为习惯、社会特征和特定人格,视克隆人为不完整的、丧失自我的人,将他们看成实验台上的小白鼠,试图用克隆技术制造无头人作为器官移植的供体,或制造人的工具等。但克隆的人也会有自己的思想,有作为人类的一切感情,应赋予其人的权利和尊严。克隆人为争取与人同样的权利而斗争的故事在科幻小说中屡见不鲜。
目前,全世界大多数国家都反对克隆人的行为。中国政府就坚决反对进行克隆人的试验,对克隆人问题态度是“不赞成、不支持、不允许、不接受”。
人类在漫长的演化过程中,能够适应复杂多变的环境,是自然选择和两性生殖长期进化的结果,也是人类靠智慧发展社会文化的结果。克隆人将有性生殖倒退到无性生殖,这种逆自;然发展规律的行为如不加控制,很可能给人类带来灾难。
根据孟德尔遗传规律的分离律和自由组合律,控制生物遗传性状的一对遗传因子一半来自父本(精子),另一半来自母本(卵子),受精卵拥有来源于父母双方的遗传物质,因基因自由组合而具有独特的基因型,生命力极强。而克隆人是人工无性繁殖,遗传物质主要来自单一个体,既背离了遗传因子分离定律,也谈不上基因自由组合产生的多样性,因此不存在任何进化意义。
克隆人将彻底搅乱代际关系和家庭伦理定位。克隆人过程中可出现体细胞核供者、卵细胞供者和孕育者三位生物学父母,及抚养者两位社会学父母,而且克隆人在各方面更接近被克隆者的兄弟姊妹而不是子女,代代相传的人类继承体系将不复存在,家庭伦理关系也将含混不清。
克隆人的诞生只需要有女性存在,能提供体细胞、成熟卵细胞和子宫,人类的繁衍即可进行。而男性不再是繁衍的必不可少的重要因素,这就瓦解了性爱与生育不可分割的紧密联系,一夫一妻的婚姻家庭社会规范也难以维持。
体细胞核移植涉及亚细胞水平的操作,这种技术并不完善,损失核内遗传物质的情况很可能发生,技术上的安全性值得怀疑。多利的诞生是英国科学家经历了227次失败后才获得成功的一例。人类目前对克隆技术的研究还远不够成熟,将其应用于人类是有很大风险的行为。
13.孟德尔定律是怎么发现的
孟德尔的豌豆实验是从1855年开始的。从孟德尔的原始论文来看,他的实验目的很明确,就是通过植物杂交来探索生物的遗传规律。他用了34个豌豆品种,花了两年时间检验它们的纯种性,从中挑选出22个品种。经过仔细观察,在这22个品种中,他又选出7对具有明显差异性状的品种。然后,孟德尔针对这7对相对性状,一对一对地进行杂交和后代分析工作,这7对相对性状分别是:种子形状、种子颜色、种皮颜色、豆荚形状、豆荚颜色、花的位置、茎的高度。
孟德尔发现,每对杂交的子一代都表现显性性状,但子一代自花授粉产生的子二代就发生显性性状与隐性性状的分离,而且显性类型数目与隐性类型数目都接近3:1。
由此,孟德尔提出颗粒性遗传因子的概念,并推论遗传因子在生物的体细胞中成对存在,体细胞形成生殖细胞时,成对的遗传因子发生分离,分别进人不同的生殖细胞中。这就是我们今天所说的遗传分离规律或孟德尔第一定律。杂交子一代产生的生殖细胞随机两两结合的结果,便导致子二代性状呈3:1的分离。
孟德尔从3:1这样简单的整数比得到遗传因子具有颗粒性的概念。这种从整数比到颗粒性的逻辑推理,很可能受到过英国化学家道尔顿(J.Dalton,1766~1844年)的思想影响。1807年,道尔顿发现化学中的倍比定律,即两种元素化合成多种化合物时,与定量甲元素化合的乙元素,其质量成简单的整数比,由此道尔顿推论元素由微观颗粒——原子组成的思想,并认为分子由原子组成,得出著名的“原子一分子论”。
在孟德尔之后,1900年,德国物理学家普朗克(M.Planck,1858~1947年)提出,只有当振子能量为某一常量的整数倍时,黑体辐射理论中的种种困难才能消除,从而推论微观形式的能量以颗粒性方式(量子)存在,创立量子论。这也是一个由整数比到颗粒性的逻辑推理的著名例子。
在揭示了一对相对性状的遗传规律(分离规律)之后,孟德尔就进一步研究两对相对性状的遗传。孟德尔发现,具有两对不同相对性状的亲本豌豆杂交所得的子一代,两对相对性状都只表现显性性状,但在子一代自交所得的子二代中,出现了四种不同类型,其中两种是两个亲本分别具有的性状组合,另外,还出现了不同于亲本的两种重新组合。孟德尔由此推论,在体细胞形成生殖细胞时,不同对的遗传因子可以自由组合。这就是我们今天所说的遗传的自由组合规律或孟德尔第二定律。
14.摩尔根对遗传学有什么贡献
摩尔根是第一位以遗传学成就而荣获诺贝尔生理学医学奖的科学家,是染色体遗传学的创始人,在孟德尔遗传学向分子遗传学发展的过程中,起着承上启下、继往开来的作用。
从孟德尔到摩尔根,正是基因概念、性状概念从模糊到明确,从易变到基本确定的历史时期。摩尔根是一位善于思考和实验研究的科学家。
在1910年里,摩尔根经历了从反对孟德尔学说到相信、支持、证实并发展孟德尔学说的重大转变。就是在这一年,摩尔根甚至写了一篇孟德尔因子不可能由染色体携带的论文投寄给《美国博物学家》杂志。可是,在这篇论文发表之前,事情却发生了戏剧性变化:摩尔根自己竟然通过实验证明,果蝇的白眼基因居然是由性染色体携带的!关于该实验的报道,很快就由美国《科学》杂志发表,而发表的时间竟然先于前一篇论文。前后两篇论文的观点截然相反,给摩尔根的学术生涯平添了一层戏剧性的色彩。
果蝇这种实验材料是1908年在纽约冷泉港卡内基实验室工作的卢茨(F.E.Lutz)向摩尔根推荐的。这是一种常见的果蝇,学名称为“黑腹果蝇”。
实验材料的选取往往是决定研究工作成功与否的关键,它在遗传学发展史中表现得尤为突出。如果以哺乳动物为实验材料,饲养管理一般都较复杂,生长期又长,而且由单基因控制的性状少而难寻,所以,一般不适合遗传学理论研究。而果蝇体型小,体长不到半厘米;饲养管理容易,果蝇繁殖系数高,孵化快,只要1天时间其卵即可孵化成幼虫,2~3天后变成蛹,再过5天就羽化为成虫。从卵到成虫只要10天左右,一年就可以繁殖30代。果蝇的染色体数目少,仅3对常染色体和1对性染色体,便于分析。作遗传分析时,研究者只需用放大镜或显微镜一个个地观察、计数就行了,从而使得劳动量大为减轻。
在野外采集到的果蝇,眼睛都是红色的,称为“野生型”。1910年5月,摩尔根在实验室里饲养的一群红眼野生型果蝇中,发现了一只白眼果蝇。摩尔根立刻认识到这只白眼果蝇的巨大价值。在实验室里,摩尔根使这只白眼果蝇(它是雄性的)与尽可能多的野生型红眼雌果蝇交配,10天后产生了1240个子裔,形成了一个庞大的果蝇株系。
白眼雄蝇与红眼果蝇杂交,子一代全是红眼果蝇。子一代自交,子二代的结果完全是孟德尔式的,其中红眼果蝇2688只,白眼果蝇728只,两者比率约为3.4:1,而约占1/4的白眼果蝇则全是雄性个性。摩尔根的这一结果,以《果蝇的隐性遗传》为题发表在1910年7月22日出版的《科学》第32卷第120页上。摩尔根在论文中没有肯定地说眼色基因一定与性染色体相关联,只是说,眼色基因的分离与两条性染色体的分离一致。他在该论文中的解释略显复杂,也存在一些细节上的错误,但结论是正确的。接下来的两年中,摩尔根又连续发表了两篇论文,终于把基因与染色体的关系确定无疑地联系在一起了。
摩尔根指出:如果假定控制眼色的基因位于X染色体上,而Y染色体上则不带控制眼色的等位基因,那么实验结果就能得到完满的解释。红眼基因(+)是显性,带有红眼基因的X染色体用X+表示;白眼基因(w)是隐性,带有白眼基因的X染色体用Xw表示。基因型为XwY的雄果蝇,由于Y染色体上没有控制眼色的基因,隐性基因得以表现,所以是白眼果蝇。当白眼雄果蝇与野生型雌果蝇X+X+杂交,子一代的基因型是X+Xw和X+Y,即雌雄果蝇都为红色复眼,且雌果蝇是杂合体。子一代个体相互交配,结果是在子二代中有3/4是红眼果蝇,1/4是白眼果蝇。雌果蝇全为红色复眼,但其中有一半是纯合体,另一半为杂合体。雄果蝇则红眼、白眼各占一半。
摩尔根把红眼等位基因和白眼等位基因定位在X染色体上,并用实验证实这些基因是由X染色体携带着遗传的,这就使基因在染色体上的假说有了坚实的基础,而且还是把一个特定的基因(白眼基因)归属到一条特定的染色体(X染色体)上,而这条特定的染色体还与性别有关。
白眼果蝇在基因学说的发展史上起了不可估量的作用。摩尔根以它作为实验材料,在遗传学史上第一次证明了基因位于染色体上,并且发现了伴性遗传规律。可以说,这个白眼果蝇开创了摩尔根基因学说的先河。
15.DNA分子的形状最早是谁发现的
在X光衍射照片的基础上,综合DNA化学研究方面的资料,两位科学家沃森和克里克,特别是沃森,眼界更为宽广,从各专家处汲取所需,而得到了新的结果。沃森被称为“DNA之父”。
1928年4月6日,沃森出生于美国芝加哥。16岁就在芝加哥大学毕业,获动物学理学士学位,在生物学方面开始显露才华。22岁时沃森来到英国剑桥大学的卡文迪什实验室,结识了巳在这里工作的克里克,从此开始了两人传奇般的合作生涯。克里克于1916年6月8日生于英格兰的北安普敦,21岁在伦敦大学毕业。“二战”结束后,来到剑桥的卡文迪什实验室。
沃森和克里克构建DNA分子结构模型的工作始于1951年秋。他们仿照泡林构建蛋白质a螺旋模型的方法,根据结晶学的数据,用金属片按原子间键角与键长的比例搭配核苷酸。核苷酸(DNA中的核苷酸是脱氧核苷酸,为简单起见,以下简称核苷酸)是DNA的基本结构单位。核苷酸有A、T、G、C共4种。
1950年,生物化学家查伽夫(E.Chargaff)报道了他对人、猪、牛、羊、细菌和酵母等不同生物DNA进行分析的结果。查伽夫的结果表明,虽然在不同生物的DNA之间,4种核苷酸的数量和相对比例很不相同,但无论哪种物质的DNA中,都有A=T和G=C,这被称为DNA化学组成的“查伽夫法则”。1952年7月,查伽夫访问卡文迪什实验室时,向克里克详细解释了A:T=G:C=1:1的法则。
1952年春,克里克的朋友、理论化学家格里菲斯(J.Griffith,他是发现肺炎球菌遗传转化现象的F.Griffith的侄子)通过计算表明,DNA的4种核苷酸中,A必须与T成键,G必须与C成键。
这与查伽夫法则完全一致,以上这些工作,就成了沃森和克里克DNA分子模型中A-T配对、G-C配对结构的基础。
1953年2月,威尔金斯将富兰克林1952年5月拍的一张非常清晰的DNA的X光衍射照片给沃森和克里克看,克里克很快发现,DNA是双螺旋的,而且构成双螺旋的两条单链走向相反。至此,DNA的骨架巳经浮现。随后,泡林以前的同事多诺告诉沃森,A-T和G-C配对是靠氢键维系的。克里克提出,与糖-磷酸骨架垂直的碱基只有朝向骨架中心(而不是离开中心向外),才能保持稳定的氢键联系。2月28日,沃森用纸板做成4种碱基的模型,将纸板粘到骨架上朝向中心配对,克里克马上指出,只有两条单链的走向相反才能使碱基完善配对,这正好与X光衍射资料一致。完整的DNA分子结构模型完成于1953年3月7日。根据这个模型,DNA分子是一个双螺旋结构,每一个螺旋单位包含10对碱基,长度为34埃(1埃=10_m米)。螺旋直径为20埃。4月15日,沃森和克里克关于该模型的第一篇论文在《自然》杂志上发表。
DNA分子双螺旋结构模型的发现,是生物学史上的一座里程碑,它为DNA复制提供了构型上的解释,使人们对DNA作为基因的物质基础不再怀疑,并且奠定了分子遗传学的基础。DNA双螺旋模型在科学上的影响是深远的。
16.DNA是如何复制的
在构建DNA分子的结构模型时,科学家沃森和克里克事实上巳经提供了DNA分子的复制模式。他们充分了解DNA双螺旋的两条链互补(碱基配对)的重要性,这是DNA复制模式的基础。复制时,DNA双螺旋就像拉开拉链那样,两条链的配对碱基之间的氢链断开,碱基暴露出来,这就形成了两条“模板链”(母链)。然后作为合成原料的游离核苷酸按碱基配对的原则结合到模板链上去。最后,结合到模板链上各有一条新链(子链)形成,原来的一个双螺旋DNA分子就变成(复制)了两个双螺旋分子。这两个双螺旋分子中各含有一条母链和一条子链。DNA的这种复制方式称为“半保留复制”。
在沃林和克里克1953年的原始论文中有关于DNA半保留复制模式推测的一段话:“我们的DNA模型实际上是一对模板,每一模板与另一个互补。我们设想:在复制前氢键断开,两条链松开、分离,然后每条链作为形成自己新链的模板,最后我们从原先仅有的一对链得到了两对链,而且准确地复制了碱基序列。”真是天才的推测丨这一推测的DNA复制模式,后来得到了实验事实的充分证明。1957年,泰勒(J.H.Taylor)等人应用放射性标记的胸腺嘧啶与放射自显影技术,证明蚕豆根尖染色体的半保留复制。1958年,梅塞尔森(M.Mesekon)和斯塔尔(F.W.Stahl)应用重氮标记与密度离心技术,证明大肠杆菌DNA的半保留复制。
后来关于DNA分子复制的细节又有了更多的了解。1968年,日本生化学家冈崎(R.T.Okazki)等人发现DNA是“不连续”复制的。复制时,先在DNA模板链上合成一些短的片段,然后再连接成与母链等长而且互补的新链。DNA合成过程中的这些短片段,后来被称为“冈崎片段”。每一冈崎片段的合成都需要DNA多聚酶的作用。但DNA多聚酶只能把单个的核苷酸连接到巳形成的核苷酸链上。因此,每一新的片段合成时,需要有一个巳存在的片段作为“引物”。
目前,巳经可以在试管中人工复制DNA。这个体外的生化反应称为多聚酶链式反应(polymerasechainreaction,简称PCR)。这个反应大致是这样进行的:将DNA模板、多聚酶、作为合成原料的4种脱氧核苷酸和引物一起加人到一种特制的薄壁塑料管中。之所以要用薄壁管,是为了便于传热。先将试管置于90°C的高温中约20秒,使DNA模板拆开成两条链(这叫“变性”)。然后将试管转置于55°C的环境中约20秒,使一对引物分别结合到两条分开的模板上去。再在72°C的温度下放置约30秒,使单核苷酸从引物的一端一个接一个地连接上去,从而复制两条新链。于是,一个DNA双螺旋分子便复制成了两个。再重复一个上述的温度循环,两个便复制成四个……如此循环下去,便可以得到大量的DNA分子。例如20次循环就可使DNA扩增至100万倍。这一切,都可以在带电脑控制的PCR仪内进行,非常方便。
以后的几个月里,缪里斯反复进行实验,结果表明PCR技术是可行的。1984年春,缪里斯贴出一张海报,叙述了PCR技术,但未能引进起广泛注意。唯一感兴趣的人是细菌遗传学家、诺贝尔奖获得者、当时洛克菲勒大学的校长里德伯格(J.Lederberg)。
最初的PCR技术有一个缺点,就是DNA多聚酶不耐热,在90°C以上的高温即失活。因此,反应过程中要不断添加新的DNA多聚酶。这不利于实现反应的自动化。1969年,有人从美国黄石国家公园温泉中的水生栖热菌体内分离纯化出了耐热的DNA多聚酶,后来的商品名叫Taq酶。1988年,西特斯公司的研究者们开始在PCR中使用Taq酶。这是PCR技术的重大改进,在此基础上实现了反应的自动化,从而PCR技术得到了极为广泛的应用。而缪里斯也因发明PCR技术面荣获1993年的诺贝尔化学奖。
17.什么是“中心法则”
1909年,伽罗德(A.E.Garrod)在《先天性代谢差错》一书中,就描述了黑尿病基因与尿黑酸氧化酶的关系。以红色面包霉(链孢霉)为材料而开创生化遗传学研究的比德尔(G.W.Beadle),1941年与塔特姆(E丄.Tatum)—起提出“一个基因一种酶”的假说,认为基因是通过酶来起作用的。
基因(DNA)主要位于细胞核中。如果酶(化学本质是蛋白质)是在细胞核内合成的,问题倒也简单,由基因直接指导酶的合成就是了。可事实却并不如此。
早在20世纪40年代,汉墨林(J.Hammerling)和布拉舍(J.Brachet)就分别发现伞藻和海胆卵细胞在除去细胞核之后,仍然能进行一段时间的蛋白质合成。这说明细胞质能进行蛋白质合成。1955年李托菲尔德(Littlefield)和1959年麦克奎化(K.McQuillen)分别用小鼠和大肠杆菌为材料证明细胞质中的核糖体是蛋白质合成的场所。这样,细胞核内的DNA就必须通过一个“信使”将遗传信息传递到细胞质中去。
1955年,布拉舍用洋葱根尖和变形虫为材料进行实验,他用核糖核酸酶(RNA酶)分解细胞中的核糖核酸(RNA),蛋白质的合成就停止。而如果再加人从酵母中抽提的RNA,蛋白质的合成就有一定程度的恢复。
同年,戈尔德斯坦(Goldstein)和普劳特(Plaut)观察到用放射性标记的RNA从细胞核转移到细胞质。因此,人们猜测RNA是DNA与蛋白质合成之间的信使。
1961年,雅可布(FJacob)和莫诺(j.Monod)正式提出“信使核糖核酸”(mRNA)的术语和概念。
1964年马贝克斯(C.Marbaix)从兔的网织红细胞中分离出一种分子量较大而寿命很短的RNA,被认为是mRNA。
实际上,早在1947年,法国科学家布瓦旺(A.Boivin)和旺德雷利(R.Vendrely)就在当年的《实验》杂志上联名发表了一篇论文,讨论DNA、RNA与蛋白质之间可能的信息传递关系。一位不知名的编辑把这篇论文的中心思想理解为DNA制造了RNA,再由RNA制造蛋白质。
10年以后,1957年9月,克里克提交给实验生物变形虫学会一篇题为《论蛋白质合成》的论文,发表在该学会的论文集(SymposumoftheSocietyforExperimentalBiology)第12卷第138页。这篇论文被评价为“遗传学领域最有启发性、思想最解放的论著之一”。在这篇论文中,克里克正式提出遗传信息流的传递方向是DNA—RNA—蛋白质,后来被学者们称为“中心法则”。
中心法则在具体细节上经过完善后,在遗传信息流传递方向上又有补充和发展。1970年,巴尔的摩(D.Baltimore)和梯明(H.M.Temin)在致癌的RNA病毒中,发现一种酶,能以RNA为模板合成DNA。他们称这种酶为依赖RNA的DNA多聚酶,现在一般称为逆转录酶。这就是说,遗传信息流也可以反过来,从RNA—DNA。这是一项重要的发现。巴尔的摩和梯明于1975年荣获诺贝尔奖。
巴尔的摩1938年3月7日生于美国纽约,在中学时代就对生物学有浓厚兴趣。
1960年毕业于宾夕法尼亚州斯沃思莫大学,1964年获洛克菲勒大学哲学博士学位。梯明1934年12月10日生于美国费城。1955年毕业于宾州斯沃思莫大学,1959年获加州理工学院哲学博士学位。巴尔的摩与梯明发现了逆转录酶,还发现了逆转录病毒的复制机理。逆转录病毒是RNA病毒,病毒的RNA逆转录出DNA,再整合到寄主细胞的染色体中,使寄主细胞发生癌变,这一成果也使癌症研究进入了一个新阶段。
对于逆转录酶的发现,巴尔的摩的华裔夫人黄诗厚也做出了重大贡献。当巴尔的摩在麻省理工学院进行癌症研究时,寻找逆转录酶遇到困难。当时正好从事病毒学研究的黄诗厚博士发现在某些RNA病毒的蛋白质外壳中带有“转录酶”一一RNA多聚酶。这个发现给了巴尔的摩极大的启示,他也果然在RNA肿瘤病毒的蛋白质外壳中找到了逆转录酶。
根据中心法则,DNA中的信息转录到RNA分子中后,要再进一步转译成蛋白质,才能表达为酶的活性。
1981年,切赫(T.R.Cech)等人在四膜虫发现自催化剪切的tRNAc>1983年阿尔特曼(S.Altman)领导的一个研究小组发现大肠杆菌的核糖核酸P的催化活性取决于RNA而不是蛋白质。这意味着RNA可以不通过蛋白质而直接表现出本身的某种遗传信息,而这种信息并不以核苷酸三联体来编码。这是对中心法则的又一次补充和发展。切赫和阿尔特曼荣获1989年的诺贝尔化学奖。
DNA本身是否也具有酶活性呢?1994年,乔依斯(G.FJoyce)等人发现一个人工合成的DNA分子具有一种特殊的磷酸二酷酶活性。此后,国外又有多例报道人工合成的DNA序列具有各种不同的酶活性。1995年,我国学者王身立等人发现,从多种生物中提取的DNA均具有酷酶活性,能催化乙酸萘酷水解为萘酚和乙酸。这种较弱的酷酶活性并不需要特定序列的DNA编码,而是非特异性DNA的一般性质。王身立推测,在生命起源时,RNA和蛋白质都还未出现,原始海洋营养汤中的DNA可能利用本身的酷酶活性水解萘酷等物质以获得能量。随着生命的进化,酶活性更强的蛋白质出现了,在生命世界中DNA作为酶的作用则为蛋白质所取代。但DNA分子本身的酷酶活性仍作为一种“分子化石”的遗迹,一直保存到今天。
18.什么是遗传密码子的三联体
既然mRNA是DNA与蛋白质合成之间的信使,人们自然设想,mRNA是指导蛋白质合成的模板。但mRNA由4种核苷酸组成,蛋白质却由20种氨基酸组成。4种碱基是如何排列组合起来以决定每一种氨基酸的呢?这就是分子遗传学中著名的“遗传密码”问题。
1954年,美籍俄裔理论物理学家伽莫夫(G.Gamow)应用排列组合计算来研究遗传密码。DNA中的4种核苷酸,每次取3个来进行组合,其组合种数是:恰好与蛋白质中氨基酸的种数20相应。伽莫夫于是提出遗传密码的三联体假说。当时,伽莫夫很得意,他将20称为“生物学上的神c生命孽
伽莫夫认为DNA的3个核苷酸组成一个密码子来决定蛋白质中的一个氨基酸,后来证明是对的。1961年,克里克用吖啶黄引起的移码突变证明遗传密码确实是三联体。当DNA中插入一个或两个核苷而引起“移码”时,基因即失去正常功能成为“突变型”。而当再插人一个核苷酸,即总共插人3个核苷酸时,突变基因又回复成正常的基因。但伽莫夫的计算前提是“组合”(不计核苷酸的排列顺序),后来则证明是错误的。遗传密码的三联体是核苷酸按一定顺序排列而成的。
生物所以能一代一代遗传下去,全在不朽的螺旋圈中。恩格斯曾经说过:“生命是蛋白质存在的方式。”尽管蛋白质的种类成千上万,而组成它们的却只有20种不同的氨桑格基酸。
1953年,英国生物化学家桑格第一次测出牛胰岛素中51个氨基酸的排列顺序,从而使人们相信,各种蛋白质的结构和功能间的千差万别,都是氨基酸的数目和排列顺序不同所致。那么,氨基酸的排列顺序又是怎样决定的呢?这个问题竟引起文学家盖莫夫的兴趣。
他在1954年大胆地设想,DNA分子中的4种核苷酸能形成各种不同组合,每一种组合就是一种氨基酸的符号。他的这个设想在美国当即遭到生物学权威的反对,权威们不能忍受不是他们那个专业的人对自己研究的专业说三道四,认为盖莫夫简直是“异族人侵”。
盖莫夫在美国不能阐述自己的观点,于是他决定求助于丹麦一家科学杂志,这家杂志很快登载了他的文章。出乎意料的是,在他的文章发表之后,立即得到一批物理学家的关注。1955年,这批物理学家,提出了三个核苷酸组合在一起决定着一个氨基酸的设想。按照这批“异族”的想法,如果从DNA的4种核苷酸(A、G、C、T)中任意取两个组合起来,那么将会形成4x4=16种组合,若以每个组合作为一种氨基酸的符号,那么将会有4种氨基酸没有符号,既然两个不行,那么就从4种核苷酸中任取3个搭配起来,这样,4种核苷酸就会形成43=4x4x4=64种不同的组合,这下子不仅使20余种氨基酸都可能有自己的核苷酸组合符号,而且还有40多种核苷酸组合是多余的。物理学家从莫尔斯电码中的“点”、“横”所形成的各种组合代表某种字母和某个数字的原理出发,提出了DNA中的4种核苷酸是以3个核苷酸组合在一起代表蛋白质分子某个氨基酸的电码。
对于缺乏生物学说知识的物理学家来说,他们对生物学的问题做出了这样的回答,也算是尽了最大的努力,尽管并不那么深人。克里克接受了物理学家提出的这种观点,进一步从分子生物学说角度进行了研究。1957年,克里克正式提出了他的假说:在DNA分子中,三个核苷酸是一种氨基酸的密码,即三联体密码假说。并且对多余的核苷酸组合作出了合理推测。按照克里克的看法,除每种氨基酸有自己的“三体密码子’夕卜,有些密码子是蛋白质开始合成和终止合成的符号,此外,也确实存在一种氨基酸有几种不同密码子的情况。
生物界虽然五彩缤纷、品种繁多,但从最简单的病毒到最高等的人类,基本的活动都是合成蛋白质的活动,无一例外地都服从统一的由核苷酸组合而成的密码。
20世纪30年代末,德国的施莱登和施旺确立了细胞学说,在细胞水平上论证了生物体的统一性,到50年代末,克里克提出的“三体密码”假说,在更深的层次上,即从分子水平上论证了生物体的统一性,使生命科学的发展更进了一步。
19.什么是染色体
在孟德尔的成果获得承认后,整个生物界都知道,是孟德尔所说的遗传因子,即基因,决定了生物的遗传。但是,基因究竟在细胞内的什么地方?这是遗传学必须回答的问题。摩尔根以果蝇为试验对象,把基因与染色体确定无疑地联系在一起。
早在1883年,鲁克斯(W.Roux)就观察到细胞核内能被染色的丝状体。1888年,沃尔德耶(W.Waldeyer)称这种丝状体为“染色体”,并猜测染色体与遗传有关。1902年,博韦里(T.Boveri)和萨顿(W.S.Sutton)指出,染色体在细胞分裂中的行为与孟德尔的遗传因子平行:两者在体细胞中都成对存在,而在生殖细胞中则是成单的;成对的染色体或遗传因子在细胞减数分裂时彼此分离,进人不同的子细胞中,不同对的染色体或遗传因子可以自由组合。因而,博韦里和萨顿认为,染色体很可能是遗传因子的载体。这是一个有科学依据的假说,但假说仍然需要科学实验的证实,这一科学历史使命落到了摩尔根(H.Morgan)的肩上。
染色体的主要化学成分是脱氧核糖核酸(DNA)和5种称为组蛋白的蛋白质。核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、:H3和H4)各两个分子构成的扁球状8聚体。现在我们知道,DNA分子具有典型的双螺旋结构,一个DNA分子就像是一条长长的双螺旋的飘带。一条染色体有一个DAN分子。DNA双螺旋依次在每个组蛋白8聚体分子的表面盘绕约1.75圈,其长度相当于140个碱基对。组蛋白8聚体与其表面上盘绕的DNA分子共同构成核小体。在相邻的两个核小体之间,有长50~60个碱基对的DNA连接线。在相邻的连接线之间结合着一个第5种组蛋白(H1)的分子。密集成串的核小体形成了核质中的100埃左右的纤维,这就是染色体的“一级结构”。在这里,DNA分子大约被压缩了7倍。
染色体的一级结构经螺旋化形成中空的线状体,称为螺线体或核丝,这是染色体的“二级结构”,其外径约300埃,内径100埃,相邻螺旋间距为110埃。螺丝体的每一周螺旋包括6个核小体,因此DNA的长度在这个等级上又被再压缩了6倍。
300埃左右的螺线体(二级结构)再进一步螺旋化,形成直径为0.4pm的筒状体,称为超螺旋体。这就是染色体的“三级结构”。到这里,DNA又再被压缩了40倍。超螺旋体进一步折叠盘绕后,形成染色单体一一染色体的“四级结构”。两条染色单体组成一条染色体。到这里,DNA的长度又再被压缩了5倍。从染色体的一级结构到四级结构,DNA分子一共被压缩了7x6x40x5=8400倍。例如,人的染色体中DNA分子伸展开来的长度平均约为几个厘米,而染色体被压缩到只有几个微米长。
染色体在细胞分裂之前才形成。在细胞的代谢期或间期,染色体分散成一级结构或伸展开的DNA分子,组成细胞核内的染色质或核质。
20.染色体的变化是怎么回事
染色体是基因的载体,染色体的任何变化都将产生显著的遗传效应。染色体的变化包括染色体数目的变化与染色体结构的变化。
染色体数目的变化又可分为倍数性变化与非整倍性变化两类。各种生物的染色体数目恒定。除了细菌、蓝藻等原核生物之外,一般的真核生物,它的体细胞产生生殖细胞(配子)时,都会经过“减数分裂”,即染色体数目减半的细胞分裂。因此,一般生物的体细胞中染色体数目为生殖细胞中染色体数目的两倍,称为“二倍体”。遗传学上把生殖细胞中所包含的全部染色体称为一个“染色体组”。体细胞中的染色体组数目发生变化,即倍数性变化。例如体细胞中仅含有一个染色体组,则称为“单倍体”。
蜜蜂的雄蜂就是单倍体。对于植物,可以用花药培养法来获得单倍体植株。单倍体再经过秋水仙碱处理诱导染色体加倍,又成为二倍体。花药培养法主要用于植物杂交育种的后代培育。杂交子一代先培育成单倍体,再诱导加倍,它的全部基因都是实大,在生产实践中颇有利用价值。但四倍体植物的种子少,不适合利用种子的农作物(如禾谷类)。
二倍体与四倍体杂交,可以得到“三倍体”。三倍体的减数分裂不正常,不能产生种子。无籽西瓜就是这样杂交得到的三倍体。香蕉是自然产生的三倍体(其祖先也可能是由二倍体与四倍体杂交而来)。
染色体的结构变化包括缺失、重复、倒立和易位。
人类的许多遗传病都是由染色体的结构变化引起的。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源