由于雷暴对国民经济和国防建设有重要意义,了解和掌握雷暴的规律,预报雷暴的活动愈来愈迫切需要。在最近几十年中,这方面取得了很大的进展。增加了观测网、使用了先进的气象雷达,更深入的了解了雷暴的物理过程。但是这些只能认为是初步的,还有不少问题有待进一步解决。
一、雷暴的结构
雷暴是一种地方性风暴,它是由积雨云产生的。雷暴代表最强烈的大气对流,是积雨云强烈发展和最终的表现,所以有时积雨云也称雷暴云。据科学工作者测量和估计,全世界每天约有44000个雷暴发生,而在任一时刻有2000~4000个雷暴在活动,其影响面积古全球面积的l%。在有些地区,例如在热带,一年四季雷暴活动频繁,几乎每天都能出现.在温带地区,雷暴在夏季和秋初一段时间内最常出现,即使在冬天也可能会出现雷暴。在夏季,在北极地区也会产生雷暴。
雷暴既然是由积雨云产生的,所以我们先简单地说明高大的积雨云是怎样由最常见的小块积云发展起来的。
一年四季都可以看到天空中经常飘浮着一些小块的积云。它们往往是好晴天气的象征。因而这些积云叫晴天积云。晴天积云的出现表明:在地表面附近,大气存在着一些不稳定性。一般这是由空气移到较暖的陆地或水面上造成。每一块积云的生命期很短,为5~10分钟,很少增长到几千米的高度,因为这种积云的进一步增长受到大气中层很稳定的干燥空气的限制,低层有限的能量还不足以冲破这个盖子在深厚的层次中发展起来。
如果大气在很深厚的层次中是不稳定的,并且水汽含量又很丰富,则情况将完全不同。只要对流云一开始发展,就可以很快的继续下去。例如,由于某些高温地区或山地的机械抬升可以形成一些云,这些云还可以集聚成更大的对流云体。在对流云中的空气(简称云的空气)由于具有浮力不断上升。在很不稳定的空气团中,温度递减率很大。上升的气块随着高度的增加浮力也增加,这是上升气块和环境温度差随高度增加的结果。这时空气加速上升。在某些情况下,到10千米左右温度差值还可以有所增加。甚至到平流层下层云空气还可以比周围环境暖。
在浮力不断作用下,天空气块的上升速度可达到很惊人的量值。如果在云底的高度,上升速度是60米/分,在到达8千米处,上升速度达到1500米/分,增加了25倍。通过这种激烈的上升运动,小的积云变成了高大的积云,这叫做浓积云。以后浓积云又发展成积雨云,即一般所指的雷暴云。积雨云的生命期至少有1小时,而不像积云只有几分钟,最多10~15分钟。有些雷暴云可集合起来组成范围更大的雷暴群,其直径可大到50千米到100千米。
积雨云中的上升气流很大,至今直接进行的测量并不多。但是有丰富经验的飞行员在飞越雷暴时肯定了强大上升气流的存在。利用间接方法可以估计上升气流的大小。例如用雷达测量雷暴中降水粒子的高度,由此估计出的云顶高度比实际只略偏低一些。人们发现,雷暴垂直伸展的范围比起30年前知道的要高得多。高度在12千米以上的雷暴并不少见。在极端情况下有些雷暴云顶到达20千米。但雷暴云也不能无限地增长下去,它的上限为平流层高度所限制。这是因为在平流层下层空气是很稳定的。我们知道,在平流层底部即对流层顶处,温度递减率有明显的转折,在对流层顶以下,温度随高度减小很快,从对流层顶开始,温度递减率至少减小到2℃/千米,或温度随高度增加。因而当上升的空气透入这层稳定空气层中时,它的温度立即变得比周围区域中的温度冷,由于它现在比周围空气重,故有向下的力作用在空气块上。尽管如此,因原来上升气块具有一定动量,故仍可继续上升l~2千米。但不久就停止上升。
我们可以把上升的云空气的变化用一个方程式表示出来,它包括空气的速度和浮力。有人作了计算,如果给定某种合理的温度分布值,并取平流层底部的上升气流速度为1600米/分,则云顶的伸展高度应在对流层顶上以1.6千米以内。
对流层顶高度全年随纬度和季节而异。在雷暴季节,大致在12~18千米,雷达观测指出,许多雷暴的顶部处于对流层顶以上1.6千米以内,与上述计算值一致。但在少数情况下可超过对流层顶3~5千米。最近有人观测到积雨云顶到达25千米。根据这些观测结果,我们可以得到结论:在极端情况下,雷暴上层的上升速度比上面取的值大2~3倍,高达3~5千米/分。在高速空气的流动下。几分钟之后,原来雷暴体内的上升空气就完全为新的上升气流所代替。如果在夜间从飞机上来观察雷暴云,在闪电中可以清楚地看到这些活跃中心的更替。
根据冰雹的观测也大致可以推断雷暴中极端的上升速度。关于冰雹的详细情况下面还要讨论。这里只指出,在12千米处,冰雹的直径约7~8厘米,与垒球大小相仿,其下落速速约1800米/分。很可能,垂直运动也大致是这个量值,因为这种冰雹有时悬浮在空中,有时甚至向上运动。
二、强烈雷暴
上面我们讲了一般雷暴的结构。这种雷暴或者由一个孤立的单体组成,或者由许多不时兴衰的气泡组成。但是,在一定条件下,这种对流单体群集在一起。可以发展成范围很大,强度很强、组织结构完全不同的雷暴,这种系统也称强烈局地风暴。局地强风暴的范围从几十千米训一百千米不等。在这种风暴内部长时期可维持稳定的上升和下沉气流达数小时之久。这种风暴是雷暴造成的天气中最激烈的,大冰雹、暴雨、强阵风和龙卷风都发生在这种风暴内。许多国家都会出现这种局地强风暴,最多的要算美国中西部各州。在我国西北地区也有类似现象出现。
局地强雷暴发生时大气的条件与一般雷暴大致相同,但它有三个明显的特点。(1)大气具有强烈的条件不稳定。在下层是含有丰富水汽的暖湿空气,在中层是干而冷的空气;(2)上下层都有强劲的风速带,并且风向随高度按顺时针方向偏转。这种风向风速随高度的增加发生显著变化的现象在气象上叫作强的垂直切变;(3)要有能够触发大气不稳定性释放的冲击力或启动力。例如由一个天气系统产生的辐合上升气流即为一种。根据上面三个条件,在大气中强烈的雷暴最常出现在高低层强风速区(或急流)交点附近以及舌状的潮湿空气区的西边。
在1.5千米高度以下的低空,有一股从南面流入的暖湿空气。在对流层中层,从西面流入的干冷空气正好位于暖湿气流之上,结果形成了一个逆温层,即温度随高度而增加。在逆温层之上温度下降很快,并且十分干燥。这样形成的逆温层对对流的增强起着很大的作用。因为这个逆温层犹如一个盖子,它能阻碍从湿层来的空气继续向上穿透,只能形成一些矮小的积云或层积云,这就避免能量一点点的散失掉。逆温层以下的空气通过新鲜暖湿空气的缓缓不断流入和补充,变得愈来愈暖愈湿,而对流层中层和上层则变得愈来愈冷,这样盖子盖得愈久,在很深厚的大气中蕴藏的不稳定能量愈多。一旦由于某种作用使逆温层破坏,巨大的不稳定能量就像爆炸似的释放出来用于雷暴的发展。
使逆温层遭到破坏的原因有几种。主要与天气系统的影响有关。在高空低压槽槽前经常有有组织的辐合上升气流产生,在对流层中部,其量值可达5~10厘米/秒,作用时间为6~12小时。这可以把地面的空气块抬升1~2千米高度,足以冲破逆温层。另外,低空冷空气向东面扩展时,强迫其前部暖湿空气抬升也能破坏逆温层。此外,太阳辐射加热、地形、停滞冷空气堆的阻碍作用都能产生气流的抬升。
关于垂直切变是产生强烈雷暴的条件还是最近几十年来得到的结果。在过去,一般的看法认为垂直切变不利于雷暴的发生,因为通常见到的积云,当处于强的风切变时,云体被吹斜,即云顶被吹得偏离了它的底部,但是现代研究结果恰恰相反,切变起到使风暴增强的作用。有人发现,在强烈的风切变气流中,高大的风暴云能够安然耸立。在风切变较强的日子,如果雷暴中产生了冰雹,则比切变弱的日子更易引起灾害。为什么强的风切变能加强雷暴呢?因为它可以把高层的降雨由高空的强风带到下风方向很远的地方,以后在那里的云外落下,这样就不致于破坏云体内的上升气流而产生下沉气流,结果使上升气流一直可以维持到自身减弱为止。不少观测表明,在强烈热力不稳定大气中,强的风切变能有助于雷暴组织和演化成生命期长的强烈雷暴。
强烈雷暴主要的特征是,雷暴内上升和下沉气流长时期共存。风暴是从左向右移动的,图中,白箭头是上升气流,来自低层的暖湿空气从风暴右前方进入环流中,然后倾斜地上升,这与普通雷暴是不同的。由于上升气流从云体内部穿过,避免了与云外干空气混合,不致减弱浮力,因而气流能到达更高的高度,在旺盛上升气流中形成的云塔常在对流层顶以上。到达高空的上升气流以后在强切变的影响下,扭转方向顺风暴前部的云砧向下风方向辐散流出,最后离开单体。随同上升气流,大量的水汽也被带到高空,以后凝结成小的降雨质点,它们一起被带到上升气流的顶端,然后按气流方向像喷泉似的向外辐散出去。由于风切变的影响,主要是按高层风的风向外流带出去。在气流把降雨质点带向外的过程中虽然都受水平风速的影响,但不同大小质点下降速度是不同的。落得慢的小质点要比大质点被风带得更远。暴雨区位于雷暴左下方。在风暴主体附近,大质点被风带向前的水平距离较短,它们下落不久,又落入上升气流区,于是重新又带到风暴的上升气流中,通过吸收小水滴和云中水分进一步增长。经过一次以上的循坏过程就能生成冰雹,如果其中的冰雹很大,降落速度也就很快,可以垂直地通过上升气流而下落。大冰雹只落在雷暴的某一部位。图中阴影区代表雷达观测到的降水范围,虚线即为降水质点轨迹,可以看到,其中一些通过强上升气流可循坏一次以上增长成大冰雹。
在强烈风暴中,一旦生成这种环流,气流经常表现成旋转运动,其中最明显的是龙卷风。它经常发生在最强上升气流底部的气旋性强切变区中。如果用气象雷达观测,这种环流最明显的一个特征就是在云底附近显示出钩状回波,而龙卷就出现在钩状回波前沿入暴雨区右侧。
下沉的气流由右侧从大气中部流入风暴,位置比上升气流更偏前。由于这里有大量小降雨质点从高空落下,蒸发冷却作用造成进入此区之干冷中层空气变成下沉气流。以后它从风暴之后在地面附近向外扩展出去,结果在气流的前缘,形成具有激烈强阵风的飑锋。
强烈雷暴的移动方向与普通雷暴是不同的。人们常常注意到,一群普通的雷暴单体一旦发展成一个强烈风暴或超级环流,移动方向和速度会有明显的变化,它们不再沿中层风移动而是偏向右移动,且此时移速比中层风慢。移向也可偏向左,此时移速比中层风快。一般在北半球更常见的是向右移动的雷暴。无论是向左或向右,其组织结构相似,互为镜像。风暴的这种异常运动显然与其组织结构的变化有关系,但现在并不清楚是什么原因使强雷暴出现这种异常运动,也不了解为什么有些雷暴向右,有些雷暴向左。例如有些观测表明,在类似环境条件下,既可出现向右移动也可出现向左移动。更有意思的是,有些雷暴分成两部分,一部分向左移,一部分向右移,两者都可造成灾害性的冰雹和雷暴天气,但其路径叉开,张角可达60°左右。
三、雷暴线——飑线
在春季和夏季,大气中不但经常出现一个个孤立的雷暴,而且会出现排列成线状的雷暴,长度达几百千米,具有很强烈的阵风、雷雨冰雹等天气。这种雷暴线叫做飑线。如果你从地面某一地点来观察飑线,不可能估计出雷暴线的范围和组织结构情况,因为你看到的只是其中一小部分。但是如果用气象雷达来观测,你经常可以发现这些雷暴线的存在。
利用现在一般的气象观测站网也不容易确定飑线的位置,因为观测网台站之间的距离在200千米以上。而飑线是介于雷暴云团与上千千米的气旋之间的天气现象,在气象上常称为中尺度扰动,用现在的观测网来测飑线,正像用大网捕小鱼一样,常常会漏掉。因而近十几年来,为了研究飑线的活动规律,不少国家设置了很稠密的观测站网,使用专门仪器进行观测和研究,这大大加深了人们对于这种大气激烈现象的认识和了解。
飑线在美国西部大草原各州出现最频繁,发生以后,它们常常向东移动。它们发生的基本条件与强烈雷暴相似,在其它国家和地区,尤其是阿根廷,前苏联西南部,中欧,印度西北部等也常有强烈飑线出现。非洲西部也有激烈的飑线,有意思的是它不是向东,而是向西移动。在我国,春夏两季,在华南、华东、西北、华北等地也可观测到飑线,强烈的可带来冰雹、大风,甚至龙卷风天气。是1971年7月31日,13点53分发生在我国沿海的一条飑线的雷达照片。它从海上移来。一条西北一东南向的回波带很明显。当它经过福建沿海各地时造成了10~12级大风,在台湾海峡海面上出现了许多水龙卷。
根据雷达观测,飑线结构相互之间差别很大,有的是一条清晰完整而具有光滑前缘的回波线,难以分辨出其中包含的雷暴个体,较常遇到的飑线内,含有成群的雷暴单体,少则4~5个,多则10几个,但其中只有几个最强最活跃。飑线上的雷暴单体与炎热午后出现的孤立雷暴虽然都同为单体,但前者要强得多。当飑线来临之前,天空中的景象有明显的特征是梨状的乌云布满天空,每一个云体都向下突起,或像囊袋悬挂在空中。云体的排列与云中某一层风向一致,类似于滚轴状型式。当频频接连不断的闪电出现时,标志着飑线已经来临。
飑线有时是冷锋(冷暖空气的交界面,其上有激烈的天气)到来的预兆。实际经验表明,在冷暖气流交汇的时候,最易生成飑线,锋面两侧温度、水分含量差别愈大,贮存的能量愈大,生成的飑线上的雷暴愈强烈。飑线并不是锋,而是生成在锋前的暖空气区中。像强烈风暴一样,它常常受西面高空槽槽前辐合上升气流的触发而迅猛地发展起来。
飑线是一种中尺度的系统。在它的后部经常还伴有一个小范围的高气压生成。这个高压叫雷暴高压。它是由降水蒸发冷却造成的较重的下沉气流形成。雷暴高压前缘经常出现大雨、风向突变,地面温度减小,气压涌升等现象,这就是飑线或强对流线的位置。在雷暴局比之后,在飑线达到成熟阶段时,还可以生成一个小低气压区(又叫尾部低压),对此至今还没有满意的解释。当飑线减弱、降水减退时,高低压系统也随之崩溃,解体。整个飑线的生命期可达6~8小时。
根据气象卫星观测发现,雷暴高压的前缘表现为一条白色的弧形对流线,主要由积云、浓积云和积雨云组成。这条弧线从衰老或消散的雷暴区不断向外扩张,许多新的对流活动就将沿这条弧线上形成。例如当弧线与其它边界线(如锋、飑线,其它对流线等)相交时,在交点上经常可导致新的对流活动发生。
飑线是一种灾害性的天气现象。尤其在飑线中某些雷暴可造成非常激烈的天气,例如冰雹和龙卷风。但是现在还不能肯定,这种飑线中的雷暴是否比普通雷暴有更强的上升气流、乱流或达到更高的高度。由于飑线影响范围很大,对人民生命财产有着很大的威胁。一般飑线的恶劣天气主要发生在成熟阶段。当飑线经过时,风向急转,风速骤增,常常达到20米/秒,有时甚至可达50米/秒,与台风风力相当,因而飑线的风有着很大的摧毁力。例如1971年6月1日河北遵化地区的一次飑线袭击,风力在12级以上。另外,震耳的雷声、暴雨、冰雹也是飑线的天气表现。在长江下游出现的一次飑线,在十分钟内最大降水量为18.6毫米。当飑线过境时,气象要素也有明显反映,一次通过浙江省平阳县的飑线,在短短十几分钟内气压急升了百帕,温度陡降8~9℃。
雷暴或强烈的雷暴在卫星云图上可以看得很清楚,它们多表现为一个个白而亮小云团,这些云团有时孤立存在,有时组织成线状,这就是飑线。是我国华北和蒙古人民共和国上空一片雷暴区的卫星云图。这些雷暴产生在该处一个冷性的高空涡旋内。这个涡旋在这里停留了好几天,结果造成了1974年7月11日~16日连续6天的雷暴天气。在北京西北方,有3条积雨云带,它们都是向东南方向移动的。第l条积雨云带ABC实际上是一条飑线。其中AB段正趋消亡,BC段正在发展,B、C都是强烈的积雨云团。第2条飑线DE紧接第l条飑线。D、E两处分别是两个积雨云团,并有雷暴高压相对应。FG是第3条飑线,它位于呼和浩特附近。这些飑线相继侵入北京,带来激烈的雷阵雨天气,并且有些地方下了冰雹。
飑线对于飞行有密切的关系。如果在航线上雷暴是孤立地散布着,飞机可以绕行而过。但面对几百千米的雷暴线横置前方,绕行是不现实的。在几十年前,人们普遍认为飑线对飞行是有很大危险性的,轻者可以造成颠簸,重者使飞机操纵失灵。现在,由于飞机能够飞得很高,并且飞机上装有气象雷达,飞行员对飑线雷暴已不再像以前那样担心了。飞行员可以用雷达确定最严重的颠簸和冰雹地区。知道这些情况后,可以很安全地通过飑线。但这并不是说,飞机不会遇到异常强烈的雷暴。
飑线可以造成洪水灾害。排列成线的雷暴像其它雷暴一样,也经历发展、暴雨、消散的过程。有时雷暴在某一地点的上风方形成,当它们移过这个地方上空时,可连续降雨。如果这种情况重复几次,在几小时内可降下大量的雨水,一天200~300毫米的降雨并不小见。由于在短时间内降下大量的雨水,会使农田淹没、江河泛溢。
飑线前部的阵风有时非常猛烈。当相互靠近的一些雷暴气流同时下沉时,可造成极端强烈的阵风。向外冲击的冷空气可以强到把建筑物吹倒的程度。损坏在停机坪的飞机,毁坏大面积的庄稼。
飑线最严重的天气现象莫过于龙卷风了,这种激烈的风暴就是在飑线某一部位孕育、发展的。
四、暴雨和冰雹
自然界中强度最大的降雨是从雷暴中落下的,常常在几小时内降下100多毫米的雨水。有时甚至在3~4小时降下近300毫米的雨水。如果在15亩面积上降下l毫米的雨水,就相当于900桶水(每桶12.3千克),可见雷暴所产生的降雨量有多大!暴雨对于交通运输、农业生产和水利工程等可带来严重的灾害。大水能够冲垮路基、水坝和桥梁,淹没庄稼,并造成水土流失。更严重的是洪水可使江河决堤和泛滥。但是暴雨也有有利的一面,丰沛的雨量对农业灌溉和水利很有好处。雷暴的降雨绝大多数是阵性的。暴雨来临时,先落G 些稀疏的大雨滴,随即转为倾盆大雨,一般能持续5~15分钟,就是特别大的暴雨也很少超过30分钟,以后降雨强度逐渐减小。一次雷暴的降雨量常在25~50毫米之间。但一个地区所以能出观洪水往往都不是一次雷暴产生,经常与几个雷暴相继通过有关。结果总的降雨量能达到200~300毫米。如果注意一下气象台的降雨记录曲线,就可看到在—次雷暴大气通过JF ,会出现几次清晰的降雨脉动,雨量时强JF 弱。近年来雷达观测和雨量分析还表明,一些雷暴体可以合并,从而使雨强迅速加大。
现在在地面测量降雨的强度,只要测量单位时间内(l小时或1天)落到地面的水量就可以了。由所得的雨强可以估计个别雨滴大小、质量和到达地面的速度。
很大的雨滴是由很小的云滴或冰晶增长而成的。虽然在开始增长的方式很不相同,但一旦达到100微米直径时,最重要的增长物理过程就是碰撞和冲并作用了。在云中,大云滴(即130个/立方米)较少,它下落的速度比数量很多的小云滴(2000个/立方米)要快。因而大云滴可以碰上小云滴,把它们一个个地捕获合并进来,以后下落和增长得更快了。只要这些大雨滴仍能处在云中,以这种方式在短时间内就可以形成很大的雨滴,直径约为1毫米左右。这样大小的两滴,在平静空气中最后达到的末速度可为200米/分左右。为了使云滴能较长时期的处于云中,云空气需以很快的速度向上运动,即有强上升气流,这使雨滴始终保持在云内,增长不会终止。
一旦形成大雨滴后,它们被云中下沉气流很快地带到地面造成很强的大暴雨。飞机测量表明,空气可以l千米/分左右的速度下降。这个速度加上在平静空气中雨滴本身的下落速度使雨滴相对于地面的运动速度可达1.5~2千米/分以上,以这样的速度,单位时间内连绵的大雨滴大量到达地面,产生倾盆大雨。
在雷暴中也可能会降雪。实际上在冻结层之上雨滴的数量已大量减少,成为雪与过冷水滴的混合物。飞机研究表明,在6千米高度,就经常会遇到中等或较强的雪。这些雪花下降时,只要在低空气温较低,就不会融化成雨滴,而成为降雪。
冰雹是雷暴产生的另一种降水现象,并且是雷暴独有的,就目前所知,积雨云是产生冰雹唯一的云系。在雷暴发展的某一阶段,在积雨云内部,大多数都有冰雹产生。在不少情况下,在冰雹还未到达地面以前就已经融化掉,这种冰雹只有在高空才能遇到,它们对飞行危害并未减少。
冰雹是一种球形或不规则的冰块,提起冰块,人们会想起还有一种叫冻雨的现象,这是一种比较小的冰粒,与冰雹是不同的;并且它也不是在积雨云中生成的,而是在别的云中生成的。冰雹一般要大得多,小的如蚕豆,大的比核桃、鸡蛋、垒球还大。少数冰雹竟重达几千克,甚至十几千克。但是,这种冰雹与形态完全不同的暴雨都是从同一块云中降下的。因为它们都需要含水丰富、具有强烈上升运动的云团才能生成。
冰雹可以引起许多严重的灾害。每次降雹,冰雹袭击的地带有一定范围。宽度在几千米~十几千米,长度在十几千米~200千米。当大冰雹下落时,还常伴有暴风、暴雨、以致毁坏大面积庄稼、房屋、伤害人命,牲畜动物等,危害很大。虽然冰雹出现的机会并不太多,但总是引起人们很大的重视。在我国,也常受到冰雹的灾害,主要在西北、华北、西南地区,多出现在春夏之交。
积雨云在所有云中总的含水量最高,并且水与冰晶共存。前面已经指出,丰富的含水量是冰雹形成的一个重要因子、但这个因子只是一个必要条件,而不是充分条件,否则每一块积雨云都要产生冰雹。实际上在热带地区,大多数雷暴都不产生冰雹,另外在有些地区,夏季的雷暴也很少产生冰雹,主要是大量的降雨。当然,在热带由于气温较暖,0℃层较高(5千米),冰雹在下落时融化了,但实际上,除了对很小的冰雹以外,这个原因并不重要。
因而结论自然就是要产生冰雹在积雨云中需有十分强烈的上升运动。这样才能克服重力,使不断增长的雹心较长时期位于云内,有机会达到冰雹或大冰雹的体积。许多事实部支持这个观点。在许多地方,冰雹最常出现在春季和夏初,这时积雨云含水量已经很高,温度递减率很大,只要地面受到一定加热,空气会强烈上升,很易产生冰雹。大多数冰雹都是出现在午后地面最强烈加热时间之后。但是在有些地区,例如太平洋西北部,在隆冬也会出现小的阵性冰雹。在山区,地形对气流有强烈的抬升作用和热力作用,因而也是经常产生冰雹的地方,观测表明,冰雹的分布与地形有很密切的关系。
关于冰雹形成的精确物理过程至今还没有了解清楚。但在不少方面已取得了一致的看法。根据地面的观测,我们知道大冰雹由许多层相间的同心透明和不透明冰层组成,中间是一个小球形的雹核。无论什么冰雹形成理论都必须解释冰雹这种成层的特有结构以及所达到的很大的体积。
长期以来,人们已经知道向上发展到很高高度的对流云。虽然其温度比0℃低得多,但在达到很低温度之前,一般云滴并不冻结。在一10~20C的云滴仍为液态,有时低到一40℃液态水也可能存在。这种情况下的水滴又称过冷却水滴。只要它不与冰晶或其它冰晶核质点相碰,将一直保持液态形式,否则将开始冻结成固体,成为雹心。
如果一个冰晶或大的冻结云滴(如雹心)通过一片过冷却云滴区,则由于捕获了许多小云滴附着在上面可增长列较大的冰晶质点。如果上升气流很弱,质点立刻由云中落下,遇到较暖的温度,即融化,这时到达地面的是雨。由雷暴中下落的最大雨滴通常就是融化的冰晶质点。如果上升气流很大,则冻结质点将被支托在云中,随着上升气流的不断增加,质点迅速增长,直到达到很大的冰雹。
那么冰雹中一层层透明和不透明的冰层是怎样形成的呢?有一个时期,人们曾经认为这些冰层是由于冰雹在0℃层上下往返运动产生的。为了形成透明冰层,唯一的方式是冰粒先开始溶化,表面形成一层水,然后被较强的上升气流带到更冷的区中,在那里又凝固。形成一层透明层。
但是现在知道,如果能粘附的液态水十分多,即使在冻结层以下部分也可以形成透明冰层。可以设想,下落的冰雹与大量的过冷却水滴相碰,为使水滴立即冻结以生成一层不远明冰层,必须以极快的速度把融解热带走。为了要把一个玻璃杯内的正方形冰块融化掉,需要较长的时间,因为供应的所需热量是很慢的。反之,冻结或凝固的问题在很大程度上也是相类似的。由于过冷却水不能很快地冻结,它聚集起来,并沿整个冰雹表面流动,慢慢地冻结起来,以此形成一层透明冰层。
如果冰雹以后落入云中含水量很小的层中,则附着在表面的水滴不多,这时能够把需要耗散出去的热量迅速带走,在过冷却水还没有来得及扩展至整个表面时就已冻结,于是气泡留在冰层内,形成了一层不透明层。
为了形成大冰雹,必须要有很强的上升气流,很丰富的液态水含量、较大的云滴、垂直伸展很高的云体。有人指出,中等的雷暴在穿入平流层1.5千米时能产生直径2厘米或更大一些的冰雹。大冰雹经常产生在雷暴的成熟阶段,在3~9千米层最常遇到。在l0千米以上,大冰雹明显减少。应该指出,既使对于很高大的云,只靠上升至顶部再下落一次过程,尽管能捕获很多过冷却水,但所能达到的大小也只有2.5厘米。对于7~8厘米直径的冰雹一次上下运动是不够的,必须要往返几次。通过什么物理过程可使2.5厘米大小的冰雹不致落出云外,而能保持在云的冷区中有机会增长到很大的体积呢?
有人曾经提出一个物理过程。据此可以说明在云的冻结层以下,冰雹能够长时期维持以保证它们达到7~8厘米的直径,并且同时形成层状结构。这个过程与前面的说明相类似。由于风随高度增加,上升气流是倾斜的,冰雹先由上升气流落下,通过含水量很低的区域以后又进入云的另一部分,该处的上升速度十分大,不仅可以支托住它,还可以把它向上带相当长一段距离,以后又重复这个循环。由于在强上升气流区含水量高、下落区含水量少,因而可以说明冰雹的葱头似的外形。因为7~8厘米的冰雹下落速度约2000米/分。显然产生大冰雹的云体必须有很强的上升气流。
有时在雷暴以外的晴空区中也会遇到冰雹。在强上升气流中冰雹被带向高空,以后又随高空气流向外辐敞出去,在伸展很长的卷云砧中下落,有时离云体可远达8千米,形成很奇怪的晴天降雹现象。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源