商高是我国古代的数学家。关于他的生平,历史上的记载很少。他是春秋时周朝人,大约生活于公元前12世纪。商高的数学成就主要是勾股定理和测量术。
中国古代最早的数学和天文学著作《周髀算经》上记载了一段周公与商高的对话。周公问:
“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”这是有名的“周公问数”。这段对话用我们今天的话解释是这样的:周公问商高:古代时伏羲是怎样测量天文和历法的?天没有可攀的台阶,地又不能用尺去测量,这些数是从哪儿得出来的呢?商高回答:
数是根据圆形和方形的数学道理计算出来的。圆来自于方,而方来自于直角三角形。直角三角形是根据乘除法的计算得出来的。将一条线段折三段围成直角三角形,一直角边(勾)为三,另一直角边(股)为四,则斜边(弦)为五。商高的证明是用右边的图来解释的。利用直角三角形三边的三、四、五的关系可知:方盘面积为49,而四个阴影的三角形的面积之和为24,因此正方形BDLH的面积为49-24=25,这种证明方法比欧几里得的几何原本中的证明更简明易懂。
周公曾是周武王的弟弟,他辅佐周武王的儿子执政。商高是贤才中杰出的人物之一,是周公的朋友。周公十分重视发展科学技术,虚心向商高学习科学知识。他曾请教商高用矩之道(矩:是由长与短两条带有刻度的直尺,一端相交成直角相联而成的),商高用六句话简要地概括了这一方法:“平矩以正绳,偃矩以望高,履矩以测深,卧矩以知远,环矩以为圆,合矩以为方。”这就是说:把矩放平了可以测定水平和铅直方向;把矩立起来,能够测量高度;把矩反过来倒竖可测深度;把矩平放可以测定水平距离;将矩环转一周,可得圆形;将两矩合起来可得到方形。
商高利用矩作为测量工作,运用相似三角形的原理“测天量地”,把测量学上升到理论,为后来的数学家推广复杂的“测望术”奠定了坚实的基础。
勾股弦的关系和用矩之道是商高的主要成就,商高的年代离我们虽然遥远,但他的科学创见却永远为后人纪念,他是世界上第一位被记载在史册上的数学家。
古希腊最伟大的数学家欧多克斯欧多克斯(Eudoxus,约公元前400~前347年),古希腊数学家、天文学家。
大约在公元前400年,欧多克斯出生于小亚细亚的尼多斯的一个医生家庭。早年曾学习医学,后来跟随当时著名的数学家阿尔希塔斯学习几何。当他来到雅典时,又怀着极大的热情进入刚成立不久的柏拉图学园,正是这个鼓励数学学习的地方,造就了一代伟大数学家。
柏拉图是当时雅典最伟大的哲学家。他曾漫游世界多年,向许多伟大思想家学习,后来逐渐形成自己的哲学思想体系。公元前378年,他返回雅典,建立了世界闻名的柏拉图学园。学园创立不久,就成为当时的思想中心,许多学者慕名而至,欧多克斯就是其中之一。柏拉图非常推崇数学的严密逻辑和美感,认为数学是锻炼人的思维的最佳途径,并将懂数学作为进入学园学习的必要条件。柏拉图不是数学家,但他创立的柏拉图学园却以其独特的风格培养了包括欧多克斯在内的许多杰出数学家。
在柏拉图学园求学时,欧多克斯生活贫困,为了节省费用,被迫在离学园十多公里远的地方住宿,每天不得不往返于两地之间,但他还是坚持了下来。后来,欧多克斯还曾到过埃及,在那里学习天文学。
欧多克斯被认为是仅次于阿基米德的数学家,他的数学贡献主要包括比例论和穷竭法两个方面。他还是一位天文学家。
比例论
欧多克斯探讨了公理法,他首先提出了现在被表述为“对于任意两个正数a,b,必存在自然数n,使得na>b成立”这一重要的公理。运用公理法,欧多克斯建立了比例理论,其中包含了相当严密的实数定义。他引入“量”的概念,指出它代表线段、角、时间、面积、体积等能够连续变化的东西,而不是具体的数,由此而发,他定义了两个量的比,这样就把可公度比与不可公度比统一了起来。这样就处理了无理量的问题,解决了因毕达哥拉斯学派发现的不可通约量造成的第一次数学危机。
这些理论构成了欧几里得《几何原本》第五卷的主要内容。
欧多克斯还研究了“中末比”的问题,即将一已知直线分成两部分,使其中一部分是全线段与另一部分的比例中项。小线段与大线段之比即我们所熟知的黄金分割比,当时被称为中末比。若设大线段长度为1,小线段长度为x,则整个线段的长度是1+x,根据题意可得到方程:x2+x+1=0,其正根为5-12=0.6180339…,即所谓中末比。欧多克斯发现了这种分割的许多特殊性质,均被记载于欧几里得的《几何原本》中。黄金分割被广泛地应用于绘画、建筑,成为人们构造优美造型的最佳选择。黄金分割还具有另外一个赫赫有名的应用,那就是用于优选法,被称为0.618法。从20世纪70年代在我国推广,取得了很大成功。著名天文学家开普勒曾说:“毕达哥拉斯定理和中末比是几何中的双宝。前者好比黄金,后者堪称珠玉。”
穷竭法
欧多克斯的另一个重要贡献是他利用穷竭法来求复杂几何图形的面积和体积。他用一系列已知的基本图形不断逼近不规则图形,使之无限接近原图形,比如用圆内接正多边形逼近圆,用欧多克斯的话说就是这个多边形从圆的内部“穷竭”了圆。他利用这种方法证明了:两圆面积之比等于其半径平方之比;两球体积之比等于其半径的立方之比等命题。穷竭法是现代极限概念的几何先驱,同时也是微积分的核心方法,由此我们说欧多克斯是仅次于阿基米德的数学家并不为过。
数学史上的里程碑
毕达哥拉斯(Pythagoras,约公元前560~前480年),古希腊数学家,在天文学、哲学及音乐理论方面也有很深造诣。
毕达哥拉斯出生于爱琴海上的萨摩斯岛。早年多方游历,曾到达埃及、巴比伦等地,师从许多数学家学习数学、天文学知识。回到家乡后,毕达哥拉斯开始招收弟子,聚众讲学。大约在公元前520年,毕达哥拉斯不满于当政者的暴政,离开家乡,迁往意大利南部的一个小岛,并在那里定居下来。当时同他在一起的只有他的母亲和惟一的一名门徒。在小岛上安顿下之后,毕达哥拉斯重新开始广收门徒,逐渐创立了著名的毕达哥拉斯学院。那是一个融宗教、政治、学术研究于一体的秘密组织,许多群众包括妇女和上层人士也积极参加活动,在当时形成一种空前的学术氛围,为毕达哥拉斯学派在各个领域的学术研究创造了良好的外部环境。
毕达哥拉斯学派的信徒一部分是普通听众,他们只是听讲教义,而没有资格接受高深的知识;另一部分成员则是在经过长期的训练和严格考核后成为属于毕达哥拉斯学派的真正弟子。
他们要发誓坚持学派的信仰,严守学派的秘密。毕达哥拉斯学派在这一点上很像普通的宗教组织,但与它们不同的是他们将数学纳入他们的教义之中,认为世界上的一切事物都是由数来构成的,上帝用数来统治世界。“万物皆数”的思想根深蒂固,这也为毕达哥拉斯学派能在数学研究上取得一系列重要成果提供了思想上的条件。
毕达哥拉斯学派对数作了许多深入的研究,比如他们认识到数与音乐的关系、数与几何图形的关系、数与天体运行的关系等等,并把学员的课程分为四个部分:算术——研究数的绝对理论;音乐—研究数的应用;几何—研究静止的量;天文—研究运动的量,合称为“四道”。
尽管毕达哥拉斯学派赋予数以神秘的色彩,他们在数的研究方面还是做出了许多卓越的贡献。例如完全数(如果一个数等于除它本身以外的全部因子的和,那么这样的数就称为完全数)的发现,他们发现6和28是完全数,因为6=1+2+3;28=1+2+4+7+14。由毕达哥拉斯学派开创的完全数的研究,至今仍是数论领域的重要课题。
毕达哥拉斯还发现了另一类特殊的数——亲和数,他发现284这个数除它本身以外的所有因子之和等于220,而220除了它本身以外的所有因子的和恰好等于284,即:
220=1+2+4+71+142,
284=1+2+4+5+10+22+44+55+110
毕达哥拉斯将它们称为亲和数,并把它们作为友谊的象征。
毕达哥拉斯定理的发现和证明是毕达哥拉斯学派最重要的数学成就之一,在我国一般称之为勾股定理。我们知道最初的几何学兴起于生产生活实际需要,比如土地丈量等活动。勾股定理作为几何学中的一个重要内容,也是源于测量土地等活动。事实上,人们在1945年通过研究美索不达米亚出土的泥版书,发现早在毕达哥拉斯之前一千多年的古巴比伦人就已经知道了这个定理,我国和印度早于毕达哥拉斯年代的数学著作中对这一定理的内容也有所叙述,但都没有像毕达哥拉斯那样给出定理的严格证明。或许这也是世界数学界将它称为毕达哥拉斯定理,并把它视为一个“数学史上的里程碑”的原因吧!
毕达哥拉斯断言:“在任何直角三角形中,斜边上的正方形等于两个直角边上的正方形之和”,即给出了勾股定理的一般表述。他还发现了用三个整数表示直角三角形边长的一种公式,也就是不定方程x2+y2=z2的一组解:2n+1,2n2+2n分别是两个直角边,2n2+2n+1是斜边,其实它们只是在斜边与一直角边之差为1时的一组整数解,而非方程的全部解。人们将满足以上方程的正整数称为毕达哥拉斯数或勾股数。
毕达哥拉斯以a,b,c为直角三角形的两直角边和斜边,作边长为a+b的正方形,然后将边长为a+b的正方形作两种不同的分割,采用等量相减的方法对定理进行了证明。
事实上,毕达哥拉斯定理是数学领域内证明方法最多的定理,1940年E·S·卢米斯(Loomis)在他的著作《毕达哥拉斯定理》(The Pythagorean Proposition)中收集的毕达哥拉斯定理的证明方法达370种之多!
毕达哥拉斯学派的最重要贡献还在于他们发现了无理数。根据毕达哥拉斯定理,边长为1的正方形的对角线长度应为2,而2是不能用当时他们所知道的数(自然数和分数)来表示的。于是他们感到惶恐不安,因为这违背了他们“万物均可用数来表示”的信条,他们甚至将发现这一数的门徒希帕索斯投进大海,以掩盖发现了不可度量的数这一秘密。无理数的发现终于导致了数学史上的第一次数学危机,然而真理永远是无法被抹杀的,人们最终还是承认了无理数的存在,使得数系完成了从有理数到实数的扩张。
值得说明的是,虽然我们现在将许多数学发现全部归功于毕达哥拉斯,但事实上或许并非如此。因为当时毕达哥拉斯是通过口传心授的方式进行教学的,而他的学生又按照学派的规矩将一切发现都归功于他们崇拜的领袖。具体事实已无据可查,所以现在很难分辨哪些数学成就是毕达哥拉斯本人所创,哪些是他的门徒们的功绩。
古希腊的数学巨人阿波罗尼奥斯
圆锥曲线是除了圆之外最常见的曲线了,在几何学中有着重要的地位,在实际生产生活中有着广泛的应用,如大家熟悉的星星的轨道,炮弹的轨迹,圆柱的截面等。对于圆锥曲线的研究也由来已久,最先发现并进行系统研究的是古希腊人。
希腊数学家柏拉图学派的门奈赫莫斯首先发现了圆锥曲线,这引起了许多希腊数学家的兴趣,他们开始对圆锥曲线作深入的研究,其中包括阿里斯泰奥斯、欧几里得、阿基米德等人。
他们的研究为系统的圆锥曲线理论的最终形成积累了大量的资料,将圆锥曲线理论进行整理、深化的任务历史性的落在了阿波罗尼奥斯身上。
阿波罗尼奥斯(Apollonius,约公元前262~前190年),希腊数学家、天文学家。
阿波罗尼奥斯年轻时曾在亚历山大求学,后来长期在那里生活。他将前人研究圆锥曲线取得的成果加以总结,在自己进一步思考的基础上,写成《圆锥曲线论》这一经典名著,被称为古希腊研究几何学的登峰造极之作。阿拉伯和西欧的许多数学家都曾经长期将它奉为必读经典。
阿波罗尼奥斯不拘泥于古已有之的内容和方法,富于想像,大胆创新,正如他自己所说的:
“模仿只会仿制他所见到的事物,而想像则能创造他所没有见过的事物。”
阿波罗尼奥斯以前的数学家研究圆锥曲线都是从三个顶角不同的圆锥出发来考虑的。门奈赫莫斯在尝试解决倍立方体问题时,发现了圆锥曲线。他将圆锥分为三类:若两条母线的最大交角是锐角,圆锥称为锐角圆锥;若两条母线的最大交角为直角,圆锥称为直角圆锥;若为钝角,圆锥称为钝角圆锥。用一个垂直于一条母线的平面截圆锥,所得截线,分别称为“锐角圆锥曲线”、“直角圆锥曲线”和“钝角圆锥曲线”。
阿波罗尼奥斯改进了门奈赫莫斯的方法,他从一个圆锥出发,用一个平面与圆锥的母线成不同角度截圆锥,就可以得到三种圆锥曲线:截面与所有母线都相交,截线为椭圆;截面与一条母线平行,截线为抛物线;截面与轴线平行就可以使得截线为双曲线的一支。他分别将这三种圆锥曲线命名为:“齐曲线”(抛物线)、“亏曲线”(椭圆)、“超曲线”(双曲线)。阿波罗尼奥斯首先注意到了双曲线有两支,并且是有心曲线。另外,他还研究了二次曲线的切线问题和点的轨迹问题。
阿波罗尼奥斯将圆锥曲线的性质总结得如此全面,以致使得后人在很长一段时间里没有可以突破的余地。直到17世纪,帕斯卡、笛卡尔创立解析几何,用新的方法进行研究才打破了这一僵局,将圆锥曲线研究作了实质性的推进。
阿波罗尼奥斯还作了《论切触》一书,在书中,他提出了著名的“阿波罗尼奥斯切圆问题”:给定三个圆(或圆的变种:点和直线,但三个点必须不共线,三条直线不能平行),求作一圆,使之与它们全都相切。
在天文学方面,阿波罗尼奥斯也作出了许多贡献。他是定量地研究天文学的早期学者之一。
为了解释行星的运动,他引进了偏心圆运动和本轮运动系统。另外,他还曾经找到了一种确定行星在运动轨道上停下来作逆行运动的点的方法。
阿波罗尼奥斯与欧几里得、阿基米德一起被称为亚历山大前期的三大数学巨人。
注释《九章算术》的刘徽
刘徽,中国古代数学家,大约生活在公元3世纪。据数学史学家考证,他出生于淄乡,即今天的山东省邹平县。
刘徽注《九章算术》,在数学上做出了许多杰出的贡献,是与他当时生活的社会环境分不开的。自先秦到魏晋,齐鲁地区作为孔孟之道发祥地,一直在文化发展程度上居于全国前列。
战国时期,齐桓公在其都城临淄设立稷下学宫,广招天下博学之士。历时150年间,该地区成为学术气氛最为活跃的研究中心。另外,公元2世纪和公元3世纪的齐鲁地区数学也较为发达,有一批数学家出现,包括郑玄、徐岳等人。在这样一种文化氛围中,使得刘徽有机会学习各种文化典籍,有机会接触到当时先进的数学知识,为他以后的数学研究积累了丰富的资料。
刘徽最大的成就是他注释了《九章算术》,在这一过程中,刘徽取得了许多创造性的成就。
经他作注的《九章算术》对我国数学的发展产生了深远的影响,成为东方数学的代表作之一。刘徽的创造性工作,我们可以从以下几个方面加以概括。
刘徽与圆周率的计算
古往今来,世界上许多数学家运用各种方法计算过圆周率,为认识π这个数付出了无数心血。我国战国时期的数学著作《周髀算经》中已有“周三径一”之说,意思是圆的周长约是其直径的三倍。这是人们在长期的实际生产生活中摸索总结出的经验性知识,并不是通过严格的数学计算得到的精确值,人们在应用过程中也发现用它计算出来的圆周长和圆面积都比实际值小。后来的数学家利用各自的方法逐步将其精确化,从此踏上寻找圆周率精确值的漫漫旅程,今天的数学家利用计算机已经将圆周率精确到小数点后数亿位。
刘徽在他的《九章算术》“圆田术注”中,论证了圆面积公式,给出了著名的圆周率计算方法——“割圆术”,并利用它计算出在当时相当精确的圆周率值。割圆术也成为数学史上伟大的创造之一。
刘徽从圆内接正六边形开始,使边数逐次加倍,作出正十二边形、正二十四边形…,并依次计算出它们的面积,这些结果将逐渐逼近圆面积,这样就可以求出圆周率的值,这种方法被称为刘徽割圆术。用刘徽的话来说,“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣。”意思就是说把圆周分得越细,即圆内接正多边形的边数越多,用它的面积去代替圆面积,就丢失的越少。不断地分割下去,让边数不断地增多,那么边数无限多的正多边形的面积就与圆面积相等了。刘徽巧妙地利用极限思想,化“曲”为“直”,化“无限”为“有限”,对圆面积公式S=1/2·CR作了相当严格的逻辑证明。利用相关的结果,在当时的计数方法、计算法则、计算工具等均不像今天这样方便的条件下,刘徽凭着他深刻的洞察力和执着钻研的精神,进行着艰苦的数字计算。推算到正192边形时,得出π=3.14,或π=157/50;推算到正3072边形时,可得到π=3927/1250(≈3.1416),这在当时是相当精确的结果。为了纪念刘徽的功绩,人们把π=157/50称为“徽率”。
刘徽的方法比希腊数学家阿基米德所用的方法更加巧妙。阿基米德用内接和外切正多边形确定圆面积的上、下限,而刘徽只用到了圆的内接正多边形。
刘徽的体积理论我们在学习立体几何时,会接触到这样一条公理:“夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”。最早明确提出这一原理的是祖冲之的儿子祖日恒(“缘幂势既同,则积不容异”)。而刘徽的体积理论则为这一原理的提出作了充分的准备。
《九章算术》时代,人们已经开始通过比较两个等高立体的最大截面积来解决某些体积问题,但并没有认识到必须保证任意等高处的截面积之比都等于最大截面积之比,才能进行比较。《九章算术》“开立圆术”中即认为球与外切圆柱之比等于π∶4,从而容易得出球体积公式V=9/16·D3其中D是球的直径。刘徽在“注”中指出此公式是错误的。他将两个底面半径等于球半径的圆柱正交,称其公共部分为牟合方盖(见下图)。刘徽指出球与外切牟合方盖的体积比为π∶4。这一结论为200年后祖冲之父子求出牟合方盖的体积,从而为得到正确的球体积公式奠定了坚实的基础。
球、牟合方盖与立方(八分之一)
刘徽与计算方法
《九章算术注》中有几百个公式和解题方法,刘徽对每个算法的正确性均作了考察,并对各种算法的内在联系及应用进行了论述。“率”是这些工作中使用最普遍的工具,刘徽极大地发展了“率”的思想,从而将《九章算术》的算法提高到系统理论的高度。
“率”本是规格、标准之意。刘徽将率定义为“凡数相与者谓之率”,即相关的一组量称为率,用以讨论若干量之间的相关性,即相对的数量关系。这一概念要比我们现在常用的比率概念宽广得多。为了求出各物的率,要有一个公度作为标准,这个公度就是单位度量,亦即一,刘徽将它称为“数之母”。如五单位米可以化为一,则米率即为5,三单位粟可以化为一,则粟率即为3,米、粟的相与率为米5、粟3。由此可见率表示某物的度量与另一物的度量的相对关系,相当于现在密度、速度等意义。我们容易知道,分数的分子和分母也可以看成一种率关系。
刘徽还给出了率的一些重要性质,如:“一组成率的数,在投入运算时,其中一个缩小或扩大某倍数,则其余的数必须同时缩小或扩大同一倍数”。由此出发,刘徽给出了三种重要的等量交换:“约以聚之,乘以散之,齐同以通之”。“约以聚之”就是说,分子、分母同时缩小同一倍数,称作约分,此时分数单位变大;“乘以散之”即分子、分母同时扩大相同的倍数,分数单位就会变小。同时,刘徽还指出经过这样两种运算之后,虽然分数单位发生了变化,表现的形式不同,但分数值不变,明确阐述了分数的基本性质。
在运算时,几个分数只有化成同一分数单位才能进行加减,从而刘徽提出“齐同术”即“齐同以通之”,也就是我们现在所说的通分。刘徽指出应先使诸分数的分母同一,而后使每个分数的分数值保持不变。
刘徽将《九章算术》中的许多算术问题解法进行了归纳总结,形成了一些系统的方法。如他高度评价了今有术,将《九章算术》中的许多术文归结为今有术,把其中包含的原理(若A∶B=a∶b,则B=Ab/a)称为“都术”即普遍方法,这一方法传到印度和西方后被称为三率法。
率在代数中的应用主要表现在方程术中,刘徽在方程的定义、方程直除法、互乘相消法消元中的齐同原理及方程新术等方面做了创造性的工作。另外,刘徽还把率应用于圆周率、面积、体积、勾股容方、容圆等许多几何问题的解法中。
《九章算术》粟米、衰分、均输三章都是关于比例和比例分配的问题,内容交错。刘徽用率将这三章的方法统一了起来,不仅把比例、比例分配归结为今有术,而且将分数、追及、利息等一般算术问题都化为今有问题,并将率应用于方程、面积、体积等问题,使得率成为计算问题的灵魂。
总之,刘徽的《九章算术注》不仅有概念、命题,而且还有联系这些命题的逻辑推理,它标志着我国古代数学已经形成了自己独具特色的理论体系。
另外,刘徽熟练地运用直角三角形的性质,推广了我国古代的“重差术”,写成了《海岛算经》一书,从书中所解决的问题可以看出刘徽已经掌握了相当复杂的测量和计算方法。
刘徽注《九章算术》,充分体现了他作为一个数学家应有的科学态度。他实事求是,不仅继承了《九章算术》所开创的数学联系实际的传统,更重要的是他没有盲目崇拜古人取得的成就。他在全面论证《九章算术》的公式、解法的同时,指出了其中的许多错误和不精确之处,并给以纠正或提出改善建议,他对许多问题的补充解法,大大丰富了《九章算术》的内容。但用对《九章算术》作注的形式展现自己的数学思想,在一定形式上也限制了刘徽的数学创造的展开及其数学思想对后世的影响,或许这该是最让人引以为憾的事情了。
丢番图与别具一格的墓志铭
丢番图(Diophantus,约公元3世纪)是古希腊最杰出的数学家之一,他在代数和数论方面作出过卓越的贡献。
对于丢番图的生平,人们了解的不多,只知道他大约是公元3世纪的人,曾经活跃于亚历山大里亚城。他的一生,在他的别具一格的墓志铭上通过一道谜语式的妙趣横生的代数方程问题反映出来:
“过路人,这儿埋着丢番图的骨灰,下面的数字可以告诉你,他活了多少岁。
他生命的1/6是幸福的童年;
再活过生命的1/12,他长出了胡须;
又过了生命的1/7,他才结婚;
再过了5年他有了一个儿子;
但爱子竟然早逝,只活了他寿命的一半;
失去儿子后,老人在悲痛中又度过4年,终于结束了他尘世的生涯。
根据这段墓志铭,设丢番图的年龄为x,你可以列出方程算出丢番图的年龄:
x6+x12+x7+5+x
2+4=x
解方程得到:丢番图活了84岁,他是33岁结婚,38岁得子。
丢番图被誉为代数学的鼻祖,他一生中解过许多代数方程和不定方程,还写有多达12卷的《算术》一书。这套书主要是代数和数论方面的内容,包括189个问题的叙述和解法,大多是一次、二次方程和很特殊的三次方程以及一些不定方程的解法。丢番图建立了不定方程的理论,第一次系统地提出了代数符号,创立了运算符号。《算术》中的一些问题构成了后来的数论问题。有些问题的结论一直被后来的数学家们津津乐道。著名的费尔马猜想问题,就是数学家费尔马在读了《算术》这本书的译本后,在书边写下的注释。
丢番图是一位才华横溢的数学家,他解方程的手法使人感到变幻无穷,神奇莫测。他远远超过了同时代的许多数学家。但由于当时希腊科学状况不景气,他的著作没有产生太大的影响。直到《算术》一书流传到中东,16世纪、17世纪又流传到欧洲时,才真正产生了影响。
数学泰斗祖冲之
祖冲之(429~500)是我国南北朝时代的一位杰出的科学家。祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,他是代表中国古代数学高度发展水平的杰出人物。
从东晋到南北朝这一段时期内,由于经济文化生活的迅速发展,推动了科学的前进。这一时期出现了许多杰出的科学家,祖冲之是其中最杰出的人物之一。
祖冲之字文远,祖籍范遒县(今河北涞水县)他生活在南朝宋、齐之间。当过南徐州从事史公府参军等职,祖冲之的故乡范阳,在西晋末年的战乱中遇到破坏,他全家随北方居民,一起迁居到江南。据《隋书》记载,他的祖先有几代人研究历法,祖父祖昌当过刘宋王朝的大匠卿,是管理土木建筑工程的官,也懂一些科学技术。祖冲之生长在科技世家,从小受到良好的家庭教育,对自然科学,文学和哲学都有浓厚的兴趣。他尤其酷爱数学、天文学、机械制造。青年时代的祖冲之一面苦心钻研、继续家学,一面学习古人的科学成就。他饱览群书,兼学百家,为后来的科研工作奠定了深厚的基础。祖冲之一生虽然也担任一些官职,但他更热爱科学,几十年孜孜不倦地从事科学研究,他重视实践,批判地接受前人的科学遗产。经过他勤勉工作,对前人的研究仔细推敲,驳正错误,推导出许多极有价值的科学成果。
祖冲之对中国科学事业的最大贡献,是对圆周率值的计算精确到了小数点后的第六位。对于现代人圆周率的计算已经不是数学上的大问题了。但是在15世纪以前,许多国家的数学家都曾寻找更加精确的圆周率,因此圆周率的精确程度可以作为衡量一个国家数学发展水平的标志。在圆周率的近似计算方面,古希腊数学家曾算得圆周率为3.1416时,我国还停留在“古率”为3上,一直沿用到汉代时,圆周率的计算才为较多数学家所注意。刘歆算得圆周率为3.1547或3.166,有效数字仅为3.1。后来东汉张衡又用10和92〖〗29作为圆周率,蔡邕、王蕃等也由于天文研究的需要计算了圆周率,但有效数字仍只有二位。刘徽从圆内接正六边形出发,依次将边数加倍,至192边形,求得圆周率为15750(相当于3.14)。刘徽的计算在中国数学史上给圆周率的计算打下了坚实的基础,而在这个基础上建造大厦的巨匠是祖冲之。祖冲之利用刘徽的方法,对圆周率进行了更加细密深入的计算。他通过计算内接正1536边形的面积,算出圆周率为3.1416,用分数表示为39271250,这在当时已经是够精确的了。但祖冲之并不满足于此,进一步提出了3.1415926<π<3.1415927。祖冲之一下子把圆周率的精确度提高了一万倍。而且他用不足和过剩近似值表示无理数值的变化范围是十分了不起的,这正是现代关于无理数表示的一个基本方法。由于中国古代存在着运用分数的习惯,祖冲之还用二个分数227(约率)和355113(密率)的值表示圆周率。密率355113近似于3.1415929(已精确到7位有效数字),这是最佳渐近分数,欧洲一直到1573年才得到这一数值,比祖冲之要晚一千多年。
在讲到祖冲之在数学方面的成就时,我们还应该提到他的数学专著——《缀术》。这本书出自祖冲之这样杰出的数学家之手,其内容博大精深,相当精彩。在他死后,他的儿子又把自己的研究成果添加进去,续写了《缀术》。可惜这部很有价值的科学著作在北宋中期就失传了,我们现在只能从历代有关文献和评论中找到一些线索。在唐朝《缀术》曾被国立学校列为必读的教材,要学习四年,是学习期限最长的算书,由此可见《缀术》一书内容之深奥。中世纪的朝鲜和日本的学校中,《缀术》也都被列为必读的书籍。
祖冲之还创造了“开差幂”、“开差立”等的算法。“开差幂”是已知长方形的面积及长宽之差求其长及宽。“开差立”是已知长方体的体积及最短棱与其他两棱之差求其长、宽、高。这分别相当于解二次方程x(x+a)=A和三次方程x(x+a)(x+b)=V。他还和儿子祖日恒一道,在世界上最早发现了“等积原理”。
祖冲之在天文历法方面也有很多创造性的贡献,他发现当时通行的《元嘉历》有三大错误,于是他上书宋孝武帝,建议采纳他编制的《大明历》,这部《大明历》是他经过长年观测天象和认真分析研究,精密而科学的推算出来的,它开辟了历法史的新纪元。遗憾的是这套先进的历法遭到保守权臣的百般诋毁和阻挠。祖冲之不畏强权,据理辩争,写出了著名的《驳议》。这篇理直气壮的论文,将保守派的谬论驳得体无完肤,反映了祖冲之不畏权势敢于坚持真理的高贵品质;也显示了他横生洋溢的才华。宋朝统治者始终未能采用《大明历》,直到祖冲之死后10年,在他儿子祖日恒的再三推荐之下,梁武帝才批准施行,一直沿用了80年。
除了在数学和天文学方面的成就,祖冲之在机械方面还有许多贡献。他曾经发明了指南车,这辆车无论怎样行走转动,车上铜人的手总是指向南方。他还发明过水礁(磨),千里船等,祖冲之对古代的经典著作还多有涉猎,他曾论述或注释过《易经》、《老子》、《庄子》、《论语》等。他甚至还写过小说,并且精通音乐。祖冲之确实可称得上是一位博学多才的科学家。
祖冲之的科学成就在我国科学技术发展史上永放光芒。他的卓越贡献也载入了世界科学史册,60年代初,人类第一次发现的月球背面的一个环形山谷,就是以“祖冲之”来命名的。祖冲之为中华民族赢得了光荣,世界人民也永远缅怀这位科学巨人。
阿拉伯的杰出数学家花拉子密
花拉子密(al-Khwārizmi,Abū Ja ‘far Muhammad Ibn Mūsā,约783~850),阿拉伯数学家、天文学家。
对于花拉子密的生平只有很少资料流传下来,通过考察历史文献,人们知道他生活的时代正是阿拉伯帝国政治局势日渐安定、经济发展迅速、文化生活繁荣昌盛的阶段,这为花拉子密从事科学研究提供了良好的社会环境。
花拉子密早年在家乡接受初等教育,后来到中亚细亚古城默夫继续深造,并且到阿富汗、印度等地游学,这使得他博学多闻,成为当时有名的科学家。公元813年,花拉子密应阿拔斯王朝的国王马蒙的邀请,到其首都巴格达工作。马蒙是一位重视科学的贤明君主,公元830年,他创办了著名的“智慧馆”,这是自公元前3世纪亚历山大博物馆之后世界上最重要的学术机构。花拉子密曾长时间主持“智慧馆”的工作,直到在巴格达去世。
花拉子密的科学研究范围涉及数学、天文学、历史学和地理学等很多领域,均取得了许多重要成果。
在数学上,花拉子密有两部著作流传了下来:《代数学》和《印度的计算术》。
《代数学》是后人将原著的书名意译后给出的,原文直译应是《还原与对消的科学》,“还原”即将方程中的负项移到方程另一端使之变成正项,“对消”即方程两端可以消去相同的项或合并同类项。
在《代数学》中,花拉子密用十分简单的例题讲述了一次和二次方程的一般解法,其中二次方程一般解法的给出在世界上是最早的。《代数学》包括三部分内容。在第一部分中,花拉子密系统地讨论了一次和二次方程的解法问题。他第一次提出“根”这一名称,指出方程有三种量组成:根(植物的根或事物的根本);根自乘的结果,即根的平方;简单数。我们现在将解方程求未知量叫做求方程的根,其来源就在于此。
花拉子密将方程化归为六种标准类型,用现代符号表示,即:
1.“平方”等于“根”,即ax2=bx
2.“平方”等于“数”,即ax2=c
3.“根”等于“数”,即:bx=c
4.“平方”和“根”等于“数”,即:ax2+bx=c
5.“平方”和“数”等于“根”,即:ax2+c=bx
6.“根”和“数”等于“平方”,即:bx+c=ax2
其中,a,b,c均为正数。
对于每一种类型的方程,花拉子密都结合具体的例子,系统地给出了一般解法。在解方程的过程中,花拉子密还认识到二次方程有两个根,这在数学史上是最早的,比希腊人和印度人有了很大的进步。但他在解方程时只取正根,而将出现的负根和零根舍去。另外,他还特别指出,若根的数目之半平方后小于自由项,则方程没有根。这相当于指出了现在我们所说的判别式必须非负的条件。
花拉子密在解方程过程中所采用的“还原”和“对消”两种变形法则正是今天我们解方程时常用的移项、合并同类项的前身。
《代数学》在12世纪传入欧洲,在以后的很长一段时间,它都被当作标准课本来使用,书中表现的内容、思想和方法对历代数学家都产生了广泛深远的影响。事实上,在中世纪和文艺复兴时期,凡是在代数学方面有过成就的欧洲数学家大多在不同程度上受到过花拉子密的影响。《代数学》一书以其逻辑严密,系统性强、通俗易懂等特点被奉为代数学教科书的鼻祖。
《印度的计算术》是一本专门讲述印度数码及其计算法的著作。书中花拉子密首先讲述了印度人使用9个数码和零号计数的方法。而后给出了四则运算的定义和法则,讲述了分数理论等。
《印度的计算术》是世界上第一部用阿拉伯文撰写的在伊斯兰国家介绍印度数码和计数法的著作,对于十进制计数法在中东和欧洲各国的传播和普及起到了关键作用。12世纪,此书传入欧洲,对于欧洲数学的发展产生了重大影响。印度数码逐渐代替了希腊字母计数系统和罗马数字,最终成为世界通用的数码。
除了数学以外,花拉子密在天文学、历史学、地理学等领域也都有很深的造诣,取得了重要的成就。
古希腊和印度的天文学著作在公元8世纪后开始传入阿拉伯国家,对其天文学发展产生了重要影响。到9世纪开始出现用阿拉伯文撰写的天文学著作,人们制造各种三角表和天文表,用以测定时间、确定日食、月食的开始时刻等。花拉子密在制造许多数据表的同时,还从理论上对已有的天文学体系做了有意义的补充,并撰写了一些关于日规和历法的著作。
中世纪,阿拉伯国家的军事和商业较为发达,这在一定程度上促进了这些国家地理学的研究和发展。花拉子密撰写了中世纪阿拉伯世界第一部地理学专著《地球景象书》,为中世纪近东和中东地理学、测量学和制图学的发展奠定了基础。
花拉子密对于历史学也颇有研究,他用阿拉伯文写出了最早的历史著作:《历史学》。
分析术杰出大师邦贝利
虚数的引入是人类在对数的认识过程中向前跨出的一大步,“虚数”这一名词是由笛卡尔在他的《几何》中首先创用的,大数学家欧拉最先引进了虚数符号“i”。在虚数的引入和应用过程中我们还应该提到另一个人的名字,那就是意大利数学家邦贝利。
邦贝利(Bombelli Rafael,1526~1572)1526年出生于意大利波伦亚的一个商人之家。大学毕业后成为一名水利设计工程师。但他酷爱数学,业余时间勤于钻研,著有《代数学》五卷,大约完成于1556年~1560年间。在这部著作中,邦贝利主要系统总结了代数方程理论。他采用了一些较为新颖的符号,并首次提出用连分数逼近平方根的方法。
为了系统总结前人解三次、四次方程所取得的成果,邦贝利从基本定义和符号入手,全面讨论了各种方程的求解方法。他主要研究了5种二次方程、7种三次方程和42种四次方程,针对每一种方程,给出了解法及例题。
卡尔达诺在研究二次方程时就已经遇到过虚数根的问题,但他只把类似于“(5+-15)(5--15=25-(-15)=40”之类的运算当作算术中“既精妙又无用”的技巧。另外,卡尔达诺也没有解决三次方程判别式为负的情形。在《代数学》中,邦贝利讨论了卡尔达诺没能解决的三次方程不可约情形,即方程的根是实数,而应用求根公式解方程时却出现平方根下为负数的表达式。邦贝利没有像卡尔达诺一样认为虚数是无用的,而是认真地看待了虚数。他证明了卡尔达诺给出的求根公式依然适用于这种情形,给出了相当于我们现在所说的虚数单位“i”的名词:“需要把它加上时,我把它叫做‘负之正’,若要减去它时,我叫它‘负之负’”。基于这样的认识,邦贝利解决了这一类三次方程,指出这一类方程通常有三个实数根,这在复数发展史上是具有里程碑式的重要意义的。
邦贝利还建立了虚数的运算法则。由于当时还没有引进虚数符号“i”,邦贝利的运算法则并不是以现在所见的形式给出的,如他是这样叙述乘法法则的:
正乘以负之正得负之正;……即(+1)(i)=+i;
负乘以负之正得负之负;……即(-1)(i)=-i;
正乘以负之负得负之负;……即(+1)(-i)=-i;
负乘以负之负得负之正;……即(-1)(-i)=+i;
负之正乘以负之正得负;……即(+i)(+i)=-1;
负之正乘以负之负得正;……即(+1)(-i)=+1;
负之负乘以负之负得负;……即(-i)(-i)=-1;
在《代数学》第五卷中,邦贝利还研究了著名的古希腊几何难题三等分角问题。他指出三等分角问题可以转化成解不可约情形的三次方程的问题,从而建立了从理论上证明不能通过尺规作图解决三等分角问题的基础。
邦贝利被誉为意大利文艺复兴时期最后一位代数学家,曾被德国数学家莱布尼兹称为“分析术的杰出大师”,在自己的教学过程中将邦贝利的著作作为学生学习三次方程的基础课本。
事实上,《代数学》是文艺复兴时期意大利出版的最有系统的代数著作,加速了方程理论等相关代数知识在西方的传播。
代数学之父韦达
韦达(F· Viete,Francois,1540~1603),法国数学家。
韦达1540年出生于法国普瓦图地区的一个律师家庭,早年在家乡接受初等教育,后来考入普瓦杰大学学习法律。20岁时,他大学毕业了,理所当然地继承父业,成为一名律师。但过了4年之后,他便辞掉律师职务,去给别人做了一段时间的秘书和家庭教师。直到1573年,韦达才又重操旧业,出任法国某地方法院律师,后来在政治上几经波折,于1589年被亨利三世任命为法国最高法院律师。1595年~1598年,法国和西班牙发生战争,韦达效力于亨利四世,为法国军队翻译截获的军事密码,立下汗马功劳。但政治生涯多变化,在韦达去世前一年,他被亨利四世免去了职务,韦达的一生可谓波折起伏。但就是在这样一种环境下,他始终将数学作为业余爱好,在工作之余坚持数学研究,并自费印刷和发行自己的数学著作,最终取得了许多创造性的成就,充分体现了一个数学家对数学事业的热爱和执着追求。
韦达在数学上的研究领域主要包括方程理论、符号代数、三角学及几何学等,在每一个领域他都做了一些有意义的工作。
符号代数与方程理论
数学中代数与算术的区别在于代数引入了未知量,用字母等符号表示未知量的值进行运算,而算术则是以具体的数进行运算。1591年,韦达出版了他最重要的代数学著代《分析方法入门》,这是最早的符号代数专著。在书中,韦达引入字母表示未知量,并使之系统化,使得代数成为研究一般的类和方程的学问,为代数学的进一步发展奠定了基础。为此,韦达被后人称为“代数学之父”。
在研究方程的一般解法的过程中,韦达试图创立一种一般的符号代数来代替原来的每一问题各有一种特殊解法的情形。他引入字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A表示未知量,并将这种代数称为“类的运算”以区别于原来的“数的运算”。同时,韦达还规定了“类”的运算法则(与数的运算法则相同)。以此为起点,韦达对代数方程理论进行了较为系统的研究。
韦达这样给出了方程的定义:一个方程是一个未知量和一个确定量的比较。他将方程作了一定的分类,给出了解方程的基本步骤和方法。
1615年,韦达的生前好友将韦达早在1591年完成的《论方程的识别与订正》一书整理出版。
书中研究了几类高次方程的解法,并得到了一般二次方程的求根公式,更为重要的是,韦达在书中提出了著名的韦达定理,即方程根与系数的关系式。他清楚地论述了对于二次方程,若第二项的系数是两数的和的相反数,第三项的系数是这两数的乘积,那么这两个数就是此方程的根。这在我们的中学代数中是一个很重要的定理,想来同学们对此肯定不会太陌生吧!
几何学上的贡献
韦达充分发挥自己在代数研究上的优势,用代数方法研究解决了一些几何问题。他给出了一些尺规作图问题涉及的代数方程知识,较早地将著名的倍立方体问题(“求作一立方体的边,使该立方体的体积为给定立方体的两倍”)和三等分角问题(“分一个给定的任意角为三个相等的部分”)转化为解三次方程的问题。事实上著名的三大几何作图问题——倍立方体问题、三等分角问题和化圆为方问题(“作一个正方形,使其与一给定的圆面积相等”),只有圆规和直尺是不能完成精确的作图的。直到19世纪,这种不可能性才被数学家证明,距离这三大问题的提出已经有两千年之久了。
韦达在《各种数学解答》一书中,讨论了一些几何作图问题,给出了无穷几何级数的求和公式,还最早明确给出了计算圆周率π的如下公式:
π2=1
12·12+1212·12+1212+12
12……
这是π的第一个解析表达式。
韦达利用圆的内接393216边形将π精确到小数点后10位数字,这在当时是欧洲最好的圆周率值。
韦达用代数方法解决几何问题的思想对后来的数学发展的意义是深远的,因为它正体现了解析几何学的根本精神。
三角学上的成就
韦达在三角学方面也有许多创造性的工作。1579年出版的《应用于三角学的数学定律》是韦达最早的数学著作之一,也是早期系统论述三角学的著作之一。书中给出了许多三角函数表和造表方法,韦达自己发现或补充的公式包括我们现在代数课本中出现的和差化积公式:
sinA±sinB=2sin(A±B2)cos(AB2)利用自己纯熟的三角学知识,韦达曾解决了当时一道著名的方程难题——
求解45次方程:
45y-3795y3+95634y5-…+945y41-45y43+y45=C
这是比利时数学家罗门向全世界数学家提出来的挑战。当时的法国国王亨利四世为此召见韦达,要求他解出此方程以为法国争得荣誉。
韦达接受任务后,立即开始钻研,凭借他敏锐的数学直觉,他发现此方程与单位圆中心角为2π/45的弧所对的弦有密切关系,并很快得出了方程的一个解。第二天,他就将方程的所有正根全部求了出来。在解方程的过程中,韦达首次将代数变换应用于三角学中,并讨论了正弦、余弦等的一般公式,具体给出了将cosnx表示成cosx的函数(n≤11)。
尽管韦达的方程理论仍然存在着许多不足,比如他不承认方程负根的存在等,但他所取得的数学成就对后来的数学家有着深远的影响,他的名言:“没有不能解决的问题”永远激励着人们奋发向上,向更高的山峰攀登,去探索未知的数学世界。
用代数方法研究几何的笛卡尔
笛卡尔(Descartes René,1596~1650)是解析几何的创立者之一。他1596年3月31日生于法国西部图朗的拉艾。他两岁丧母,深受父亲溺爱。父亲是布列塔的地方议会的议员,而且是一个相当富有的律师,拥有相当可观的地产。笛卡尔从小身体孱弱,但好奇心强,勤学好问,父亲亲昵地称笛卡尔是“我的小哲学家”。后来他的父亲去世,给笛卡尔留下一笔遗产。这使他此后的一生中有可靠的经济保障,得以从事他自己喜爱的工作,笛卡尔8岁时被送进当时欧洲最著名的教会学校拉夫赖士耶稣会学校。这个学校给他打下了数学基础,比当时在大多数大学里能够获得的根底还强得多。1612年~1616年笛卡尔遵父命去普瓦捷大学学习法律。在获得法学博士学位后,他去巴黎当律师。笛卡尔厌烦巴黎花花世界的生活,他躲避到巴黎僻静的郊区,在那里潜心研究几何学。笛卡尔不满足书本知识,决心要走向社会,“去读世界这本大书”。于是笛卡尔到荷兰从军。由于那时荷兰太平无事,他享受了两年不受干扰的沉思。有一天笛卡尔在荷兰布雷达的街上散步,偶见一张数学题悬赏的启事,能解答者将获得本城最优秀的数学家的称号。两天后,笛卡尔果然解出了这个题目。
这使得荷兰的多特学院院长、哲学家、医生兼物理学家皮克曼大吃一惊。从此,他与笛卡尔志同道合,后来成为献身科学的莫逆之交。皮克曼向笛卡尔介绍了数学的最新进展,给了他许多有待研究的问题。与皮克曼的交往,使笛卡尔对自己的数学与科学能力有了充分的认识,他开始认真探索是否存在一种类似于数学的、具有普遍运用性的方法。
1619年冬天,笛卡尔随军驻扎在多瑙河畔,他专心致志地思考数学与哲学问题。他不满意欧几里得几何学,认为“它只能使人在想像力大大疲乏的情况下,去练习理解力”;他也不满意当时的代数学,认为它“成为一种充满混杂与晦暗、故意用来阻碍思想的艺术,而不像一门改进思想的科学”。他曾呆在巴伐利亚一间房子里,整天深思,昼有所思,夜有所悟。1619年11月10日夜笛卡尔说他连续作了3个奇特的梦,于是经过独立思考他得出两个结论,第一,如果要发现真正的知识,必须靠自己去实行整个研究计划,正如一件上好的艺术品或一幢完美的建筑,总是出自一个能人之手;第二,在方法上,必须从怀疑当时的哲学的所有内容为出发点,并寻找自明的确定的原理,在此基础上重新构造出一切科学。因而有人说,他的梦就是建立解析几何的线索,这一天是笛卡尔一生中思想上的一个转折点。
笛卡尔是近代哲学的开创者。他的哲学著作焕发着一股从柏拉图到当时的任何哲学名家的作品中全找不到的新气息。笛卡尔虽然是近代数学的开创者之一,但更确切地说,他在数学和自然科学上的成就,只是他哲学成果在科学上的表现。1632年他完成了重要论文《宇宙论》。1637年发表了《折光》,《陨星》和《几何学》,他最有名的《方法谈》就是这部选集的哲学导言。1641年笛卡尔发表了他的哲学杰作《第一哲学沉思集》,三年后出版了巨著《哲学原理》,全面地阐述了他的形而上学和科学理论。1650年2月因风寒转为肺炎,这位哲学巨人在瑞典斯德哥尔摩长辞人世。他的著作在生前就遭到教会的指责,在他死后被列入梵蒂冈教皇颁布的禁书目录之中。但是,他的思想传播并没有因此而受阻。笛卡尔成为17世纪及其以后的欧洲哲学界和科学界最有影响的巨匠之一。
笛卡尔的数学成就与他的数学观密切联系。在他的哲学著作中有许多地方体现了他对数学的看法。他主张把逻辑、几何、代数三者的优点结合起来而丢弃它们的缺点,从而建立起一种真正的普遍的数学。笛卡尔的主要数学成果则集中于《几何学》这部书中。笛卡尔对几何学的伟大贡献是发明坐标几何。当然还不完全是最后形式的坐标几何。他在《几何学》一书中说:“在分析问题中,若认为该问题可解时,首先把要求出的线段和所求的未知量,用名称表达出。然后,弄清已知和未知线段的关系,按照正确的逻辑顺序,用两种方法来表示同一量,并建立相等的关系,把最后得到的式子叫做方程式。”显然,笛卡尔几何是以“解析”作为方法的,即把对图形的研究转化为对方程式的研究。这充分显示了笛卡尔的卓越睿智,这的确是几何学研究中的一次大革命。在这种思想指导下,他引入“坐标”观念。当满足方程式的变数(x,y)变化时,坐标(x,y)的点画出的是曲线。希腊人认为“线是点的集合”,笛卡尔却认为“线是点运动的结果”。由此看出,笛卡尔关于“线”的定义与希腊人的显著区别在于“动”与“静”。这种思维方法给牛顿等大数学家以很大的影响。笛卡尔当时创立了坐标几何,但还没有引入现今通用的xoy直角坐标系。他只是在一条长为x的线段AB的端点B处,垂直地画一条长为y的线段CB,用此表示x与y的对应。在几何学中他用字母表中的小写字母a、b、c等代表已知量;x、y、z等代表未知量,这种用法一直延续至今。
笛卡尔坐标几何的建立,实现了用代数来研究几何,为数学引入了新的思想,使代数方程和曲线曲面等联系起来,并引入了变量,从而改变了数学的面貌,使几何的目标可以通过代数达到,而代数的语言可以用几何解释。笛卡尔的思想,对数学的发展产生了深远的影响。
世界上第一台计算机的制造者帕斯卡
帕斯卡(Pascal Blaise,1623~1662),法国数学家、物理学家、哲学家。
1623年,帕斯卡出生于法国中部的克莱蒙城,后来迁居巴黎。帕斯卡幼年丧母,在父亲的精心教育下长大成人。少年时代的帕斯卡已经对数学产生了浓厚的兴趣,12岁时,他就向父亲问起“几何学是什么?”的问题。他的父亲也是当时有名的数学家,但对于儿子的问题似乎并不以为然,就简单回答说:“几何学是描述一些规则的图形并揭示各图形间关系的科学。
”可是,小帕斯卡却对父亲的回答认真研究起来,他自己动手画了许多三角形、四边形和圆,每天对着这些图形苦苦思考,试图发现它们的性质和其间的关系。对于这些图形,帕斯卡还分别给它们取了生动有趣的名字,如他将直线叫做“木棒”,将圆称为“车轮”,把平行四边形看成“拉扁的方块”等。功夫不负有心人,帕斯卡还真的发现了这些图形的一些性质,甚至他还能够用一种巧妙的方法证明了三角形内角和为180°。这使得父亲惊喜万分,从此开始细心指导帕斯卡学习数学,帕斯卡的数学水平也有了长足的进步。
帕斯卡在数学的许多领域都取得了丰硕的成果。
帕斯卡是概率论的创始人之一。早在13岁时,帕斯卡就发现了二项式展开的系数规律,提出了由这些系数所组成的所谓的“帕斯卡三角形”。事实上,我国古代数学家贾宪早在帕斯卡之前就已发现了这一三角形。它对于计算二项式系数,研究其组合性质具有很重要的意义。
1654年,帕斯卡曾与大数学家费马通信研究解决著名的赌金分配问题,这是一个导致概率论学科产生的最初问题。帕斯卡后来发表了论述概率论的专著《算术三角形》,概率论的基本原理和一些重要的组合定理在其中都得到了很好的阐述。另外,在这本书中,帕斯卡还给出了数学归纳法的精确定义,这在世界上是最早的。
16岁时,帕斯卡写出了他的第一篇数学论文《圆锥曲线论》,受到当时数学界的广泛赞誉。
在这篇论文中,他提出了著名的“帕斯卡六边形定理”——“内接于圆锥曲线的六边形的三组对边的交点共线”,这是射影几何学中的基本定理之一。
帕斯卡在微积分领域也作出了卓越的贡献。他用几何形式对图形面积、立体体积和曲面面积作了形象的描述,给出了求不同曲面面积和重心的一般方法。他所建立的积分法的基本思想对微积分学的创立起了重要作用。
不仅在数学领域,帕斯卡在物理、哲学领域也取得了卓越成就。
帕斯卡是液体静力学的创始人,他建立了这一学科的基本原理和液压机的操作原理。他发现“封闭容器内流体在任何一点所受到的压力以同等的强度向各个方向同样的传递”这一流体静力学中最基本的原理,被称为帕斯卡原理。也正是在帕斯卡的领导下,人们通过实验证明了大气压的存在,彻底粉碎了经院哲学中“自然畏惧真空”的古老教条。
1642年,帕斯卡制造了世界上第一台计算机,输入数据后,能够自动进位,进行加减运算。
它的问世给后来的计算机制造提供了基本原理和研究资料,莱布尼兹正是在此基础上制造出了能够做乘除运算的计算机。
让人们感到惋惜的是病痛缠身的帕斯卡逐渐对精确科学的抽象性感到了失望,开始对宗教怀有极其虔诚的信仰。从1655年开始,他就住进了一个修道院中,过着僧侣式的生活,直到他39岁时逝世。这位早熟的数学天才就这样早逝了,但在他不足40年的生命中,他却给后人留下了丰富的创造和科学遗产。
帕斯卡不但在自然科学方面取得了那么优秀的成果,他还是一位散文家。他以其流畅的文笔,深刻的洞察力写成《思想录》和《致外省人的信》等文学著作,对法国文坛产生过一定的影响。他的名言“一个人的美德决不能从他特别的努力来测度,而应从他每天的行为来测度”,充分显示了他深刻的思想和执着的品格。
数学史上最著名的伯努利家族
伯努利家族是世界数学史和科学史上最著名的家族之一。从17世纪后半叶至20世纪30年代这个名门望族中近半数是优秀人才,他们之中有学者、教授、艺术家等,特别是数学人才辈出,共产生了数十名数学家。伯努利是这个家族的姓,这个家族祖居荷兰,信仰新教。由于长期受到天主教徒的迫害,伯努利家族被迫由比利时迁居到瑞士的巴塞尔。巴塞尔自从13世纪中叶就是瑞士的文化与学术中心,那里有欧洲最古老的著名的巴塞尔大学和良好的文化教育传统。伯努利家族的成员,在这样的社会与家庭环境中仅仅从17世纪到18世纪就产生了8名优秀数学家。其中最著名的是雅各·伯努利,约翰·伯努利和丹尼尔·伯努利。
雅各·伯努利(Jakob Bernoulli,1655~1705)是在17世纪到18世纪期间欧洲大陆在数学方面做过特殊贡献的瑞士数学家。他在数学上的贡献涉及微积分、解析几何、概率论及变分法等领域。
雅各毕业于巴塞尔大学。1671年获艺术硕士学位。这个艺术是包括算术、几何、天文学、数理音乐的基础以及文法、修辞和雄辩术七大类。他遵父愿在1676年又取得神学硕士学位。他虽然做了牧师,但酷爱数学,自学了大量数学经典著作。他学过笛卡尔的《几何学》,也钻研了莱布尼兹的微积分理论。他曾经到荷兰、德国和法国旅行,结识了莱布尼兹、惠更斯等著名数学家。从1686年~1705年他去世前,雅各·伯努利一直是巴塞尔大学的数学教授,他和莱布尼兹一直保持经常的通信联系。他掌握并发展了微积分理论,此外他在变分学、概率论及解析几何等方面都做出了开创性的贡献。
雅各·伯努利第一个把莱布尼兹用“∫”表示和称为“积分”,与“微分”并列起来。从此莱布尼兹也使用了“积分”的名称。1691年雅各·伯努利第一次引入了极坐标,这样某些高次曲线用极坐标可以比较容易地画出来,比直角坐标法更方便。例如双纽线方程(x2+y2)2-2a2(x2-y2)=0表示为极坐标方程为p=2a2cos2θ。他还研究了悬链线,对数螺线p=aθ的性质。直到今天,对数螺线的这些性质在生物学、工程学、测量学等许多科学技术上都有着广泛的用途。雅各·伯努利在他的巨著《猜度术》中提出了概率论中最重要的定理“大数定律”,并给出了证明。他还是变分法的主要奠基人。
雅各·伯努利一生致力于数学研究,对17世纪下半叶近代数学的发展产生了巨大影响。
约翰·伯努利(Johann Bernoulli,1667~1748)是雅各·伯努利的弟弟,也是瑞士的著名数学家。比起他的哥哥雅各来他是一位在数学上更为多产的贡献者,他大大地丰富了微积分学。并且是使这门学科的作用在欧洲大陆得到正确评价的具有影响的人。
约翰·伯努利生于巴塞尔,青年时被父亲送去经商,后来又钻研过医学。约翰在巴塞尔大学学习期间,怀着对数学的热情,跟他哥哥雅各学习数学,他们俩都对无穷小数学产生了浓厚的兴趣。在莱布尼兹的思想影响和激励下,约翰走上了研究和发展微积分的道路。1691年~1692年之间,他写出了世界上最早的关于微积分的教科书。1691年约翰·伯努利成为荷兰的格罗宁根大学的数学教授,后来成为巴塞尔大学的教授。1699年被选为法国科学院院士。1712年被选为英国皇家学会会员。他还是彼得堡科学院和柏林科学院的名誉院士。
约翰·伯努利首先使用“变量”这个词,系统地阐述了积分学理论,论述了求曲面面积、曲线长的不同类型的微分方程的解法,彻底解决了有理分式的积分法。在求不定式O〖〗O型的极限时,发现了一个法则,他把这个法则告诉了他的学生罗必塔,后来这个法则被错误地命名为罗必塔法则。1696年约翰·伯努利提出了著名的“最速降线问题”,这个问题的解答就是一条摆线。约翰·伯努利把研究成果扩展到可以用来确定光线在各种介质中传播的路径。最速降线问题是“变分法”这门微积分的新的分支的开端。伯努利兄弟研究的等周问题,也对变分学的发展起了推动作用。因此他们成为了变分法的创始人。约翰·伯努利对解析几何也做过一些有益的工作,1715年他给出了三维空间坐标系的定义,提出曲面可以用三个坐标变量的一个方程来表达。此外约翰·伯努利还将微积分应用到物理学特别是力学和天体力学方面。
约翰·伯努利在他的科学生涯中与许多科学家建立了广泛的联系,交流研究成果。他与110位学者有通信联系。进行学术讨论的信件大约有2500封,这些都大大地促进了学术的发展。
他还致力于教学和培养人才的工作。他培养出一批出色的数学家,其中包括18世纪数学界中心人物欧拉。
丹尼尔·伯努利(Danicl Bernoulli,1700~1782)是著名的伯努利家族中最杰出的一位数学家。他是约翰·伯努利的第二个儿子。当他出生时,他的父亲正在格罗宁根大学任教授。丹尼尔13岁时开始学习哲学和逻辑学,15岁获学士学位。他的父亲和他的哥哥教他学习数学,使他受到了数学家庭的熏陶。1718~1720年他先后在巴塞尔大学、海德堡大学和斯特拉斯堡大学学习。起初他研究医学,后来转向了数学,他25岁时成为圣彼得堡高等学校的数学教授,他还做过植物学教授、物理学教授、哲学教授,他曾和欧拉一起工作。1733年丹尼尔离开彼得堡之后,就开始与欧拉之间长达40年的通信。在通信中丹尼尔向欧拉提供重要的科学信息,欧拉运用杰出的分析才能和丰富的工作经验给予他最迅速的帮助。他们是亲密的朋友也是争论的对手。他们争论许多数学和力学问题,促进了学术的发展。“争鸣”成为丹尼尔治学思想的一个主要内容。这种学术上的争论方式,至今仍是科学发展的动力之一。丹尼尔还同哥德巴赫等数学家进行学术通信。
丹尼尔·伯努利的研究工作涉及到代数、概率论、微积分、级数理论、微分方程等很多方面。最出色的工作是将微积分和偏微分方程理论用于解决物理学的振动和摆动问题,并提出理想液体常态运动方程,即“伯努利方程”。这是液体和气体动力学的基本方程。他著作的《液体动力学》是研究气体力学和液体力学的重要文献。所以他被人们称为数学物理方法的奠基人。丹尼尔·伯努利是位多产的数学家,他和欧拉双双荣获法兰西巴黎科学院的十次奖金。
他和父亲一起还获得过法兰西巴黎科学院的双倍奖。1750年他当选为英国皇家学会会员,被聘为圣彼得堡科学院的名誉院士。丹尼尔·伯努利研究的领域极为广泛,他的工作几乎对当时的数学和物理学的研究前沿的问题都涉及到了。他头脑机敏而富有想像力,是他第一个把牛顿和莱布尼兹的微积分思想连结了起来。他是18世纪数学物理方法的奠基人之一,他同时也对实验物理及仪器设备非常有兴趣,他不仅在数学和物理学上取得伟大的成就,而且在医学领域里也有许多研究成果。丹尼尔丰硕的科学成就使他在科学史上确保持久的地位。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源