每发射一次,就前进一步。在飞向太空的实践中不断完善、优化,正是“神舟”的轨迹。
1992年,载人航天工程正式立项。仅仅用了7年时间,航天科技人员就攻克了载人航天的三大技术难题——研制出了高安全性、高可靠性的大推力火箭,掌握了载人飞船的安全返回技术,构建了太空飞行的生命保障系统。
1999年11月20日,我国成功发射第一艘无人试验飞船“神舟一号”,实现了天地往返的重大突破。在美、苏发射载人航天器近半个世纪后,起航的中国载人航天事业,在几年内走完了发达国家三四十年所走过的路。
此后3年里,“神舟二号”至“神舟四号”3艘无人飞船试验飞行连续获得成功。发射、返回、测控、环境控制……一项项关键技术陆续突破,飞船技术状态逐渐接近载人,前3次无人飞行试验中发现的有害气体超标等问题,也在“神舟四号”飞船上得到了彻底解决。
载人飞船,藏了多少秘密
加加林载人航天是20世纪人类最伟大的壮举,它大大扩展了人类的活动范围,实现了人类飞天的梦想。同时,它也是大规模开发与利用空间资源的重要手段,对一个国家的政治、军事、经济和科技等方面的发展均有重要的战略意义。1961年4月12日,前苏联宇航员加加林乘坐“东方1号”载人宇宙飞船升空,成为世界航天第一人,开创了载人航天的新纪元。此举不仅使加加林名扬四海,而且宇宙飞船作为第一种载人航天器也因此蜚声全球。
“上升”号结构图宇宙飞船与返回式卫星有相似之处,但因为要载人,所以增加了许多特殊设置的系统,以满足航天员在太空工作和生活的多种需要。例如,用于空气更新、废水处理和再生、通风、温度和湿度控制等的环境控制和生命保障系统,报话通信系统,仪表和照明系统,航天服,载人机动装置和逃逸救生系统等。空间交会对接技术是载人飞船工程的一项关键技术,因为只有实现空间安全对接才能为其他航天器提供运输功能。
双子星座“联盟”系列飞船“阿波罗”号飞船航天器再入大气层和安全返回技术的掌握也是至关重要的。尤其是载人飞船,除了将飞船在返回过程中的制动过载限制在人的耐受范围内,还应使其落点精度比返回式卫星更高,以便于及时发现和营救航天员。前苏联载人宇宙飞船就曾因落点精度差,使航天员困在了冰天雪地的森林中差点被冻死。目前,掌握航天器返回技术的国家只有美国、俄罗斯和中国。
从结构来看,人类已研制出了三种结构的宇宙飞船,即一舱式、两舱式和三舱式。其中一舱式最为简单,只有航天员的座舱。两舱式飞船由座舱和提供动力、电源、氧气和水的服务舱组成,它改善了航天员的工作和生活环境。世界上第一个出舱的航天员列昂诺夫乘坐的前苏联“上升”号飞船以及美国的“双子星座”号飞船均属于两舱式。最复杂的是三舱式飞船。它是在两舱式飞船基础上或增加一个轨道舱(卫星式飞船),作为活动空间、进行科学试验等,如前苏联的“联盟”号系列飞船;或增加一个登月舱(登月式飞船),用于在月面着陆和离开月面,如美国的“阿波罗”号飞船。
而从功能上来说,在已发射的宇宙飞船中,除了载人飞船外,还有货运飞船和载人货运混合飞船。按照飞行任务的不同,载人飞船又可分为卫星式载人飞船、登月式载人飞船和行星际式载人飞船。前两种在20世纪已经发射成功,后一种有望在21世纪实现,很可能是载人火星飞船。
简单又复杂的载人飞船
可以说,载人飞船是当今最简单的一种载人航天器,具有飞行时间短、沿弹道式或半弹道式路径返回、一次性使用等特点。即便相对简单,实际上它也很复杂,目前为止,只有中、俄、美3国掌握了相关技术。
为了适应在返回地面时减速、防热及结构方面的需要,载人飞船的返回重量要越小越好。为此,一般真正返回地面的只有座舱,这也是分舱设计的重要原因。它要像飞机在空中抛掉副油箱和多级火箭抛掉熄火后的子级火箭似的“轻装下阵”。所以,飞船座舱的外形设计十分重要。
载人飞船的核心部位是座舱,现阶段通常采用的是无翼钝头旋转体,有的是球形,有的是钟形。这种简单外形具有结构简单、工程上易于实现等特点。同时,座舱一般都有视野开阔的舷窗,便于航天员观察发射前的准备活动、在轨交会对接情况、返回点火时的姿态和再入着陆的地面情况等。俄罗斯宇航天曾多次在自动对接系统失灵的情况下,通过舷窗进行手动对接获得成功。此外,为保持航天员高效率地工作,座舱内的大气压力和成分、供氧、二氧化碳和水汽的清除、水和食物、航天服等都要细致研究,这些都需要复杂的技术手段才能完成。
载人飞船的气闸舱有两个闸门,一个是内闸门,与座舱连接;另一个是外闸门,可通向太空。航天员出舱前要在座舱内穿好航天服,然后走出内闸门,关闭内闸门,把气闸舱内的空气抽入座舱内,当气闸舱内和舱外压力相等时就可以打开外闸门进入太空了。航天员返回气闸舱时按相反的顺序操作。内外闸门的气密性绝对可靠,是气闸舱工作的基本条件,闸门的启闭必须十分小心和熟练,避免漏气很重要,否则极其危险。
在上升或返回过程中,载人飞船一旦发生故障需要应急弹射时,座舱门要能够迅速打开;而在轨道运行或降落在海面时,则要求座舱门严格密封。航天员除可由座舱门进出以外,还能从应急逃逸口爬出座舱。在载人飞船上升、轨道运行和返回地球三个不同的飞行阶段,有不同的飞行环境,所以其救生手段也不同。例如,发射飞船的火箭起飞后发生危险,如果火箭飞行高度低于两万米,航天员则可像飞机的飞行员一样启动弹射坐椅从座舱弹出,再打开降落伞返回地面;若火箭的飞行高度超过两万米,航天员就只能启动飞船顶部逃逸用的小火箭,用它把飞船拉离运载火箭,飞向安全区后,再打开飞船的降落伞,使飞船软着陆。
目前,载人飞船还是一次性的,要想重复使用必须解决两大难题:一是座舱热防护层能经受1000℃以上的高温;二是返回着陆系统可保证以很小的速度准确着陆,从而确保飞船不被烧坏和撞坏。国外正从这两方面入手,研制可重复使用的载人飞船。
飞船的用途
随着人类航天活动的不断深入,宇宙飞船的用途也随之越来越广泛。载人飞船更是在载人航天史上不可磨灭的功绩。将人送入太空后,宇宙飞船被用于对地观测、航天员出舱作业和生物学研究等多种科学研究和各项航天技术试验,取得了巨大的成果。
宇宙飞船比较重要的一个用途,就是为空间站和月球基地等接送航天员和物资。实现这一功能,飞船的费用较航天飞机低许多。目前在轨的国际空间站和以前的“和平”号空间站、“和平”号空间站“礼炮”号系列空间站以及美国“天空试验室”空间站,都是用宇宙飞船作为天地往返的交通工具。飞船犹如太空“公共汽车”,为人类进行外太空探索立下了汗马功劳。
人类在宇宙空间站中工作和生活,随时可能出现危险。比如,航天员突发急症或飞船出现意外时,就需要航天员马上撤离空间站,返回地面。由于宇宙飞船体小质轻、成本较低,因此很适于长期停靠在空间站上用作救生艇。若用价值连城的航天飞机作救生艇,长期停留在空间站上,则得不偿失。1984年前苏联的“礼炮-7”空间站出现故障时,就是靠停靠在站上的“联盟”号飞船把两名宇航员紧急撤回地面的;1998年开始建造的国际空间站也用“联盟-TM”飞船作为救生艇。
因为飞船带有推进系统,能机动变轨,因而可以迅速降低高度,进行侦察等军事活动。美国的“双子星座-7”飞船在轨飞行期间,飞船上的宇航员曾用红外遥感器,监视和跟踪了一枚潜射导弹的发射,所获信息比潜艇上的观察人员报告得还要快。
目前,国外已经开始用宇宙飞船进行太空旅游了。自从美国加州百万富翁丹尼斯·蒂托,在2001年4月乘“联盟-TM”飞船登上国际空间站,成为第一位登上太空的旅行者之后,很多人都对太空之旅充满了期待。为此,俄罗斯Energia火箭航天公司表示,丹尼斯·蒂托即将开始太空旅行他们计划为未来的太空旅客提供为期一周的太空服务。旅客将可以乘坐俄罗斯的“联盟”号飞船,前往太空参观。在飞船内,游客既能体验失重的感觉,又能透过舷窗博览群星,遥看美丽的地球。
此外,从目前和可预见的将来来看,未来的行星际载人飞行,将由飞船率先实现,而且可能是载人火星宇宙飞船。简言之,宇宙飞船无论在过去、现在还是将来,都是大有作为的。
我国的“神舟”飞船
我国的“神舟”号是比较先进的载人飞船,已多次遨游太空。目前我国的“神舟”飞船系列,已经有“神舟一号”“神舟二号”“神舟三号”“神舟四号”“神舟五号”“神舟六号”“神舟七号”。其中从“神舟一号”到“神舟四号”都是无人飞船,本章主要讲这一部分。从“神舟五号”到“神舟七号”,都是载人飞船,而“神舟七号”更是载有三位航天员,并且是中国航天员第一次出舱行走。可以说,我国的“神舟”飞船系列,正一步一个台阶地向更高的水平迈进。
知识点中国发射载人飞船为什么在冬天和晚上?
航天发射是一项庞大的系统工程,飞船上天后,要由航天测控网对飞船实施测控管理和回收。这个测控网是由多个陆基的国内测控站、国外测控站和四艘“远望”号远洋航天测量船组成。在对飞船实施测控的过程中,他们同时分布在太平洋、印度洋和大西洋的预定海域。
除了“远望1号”,其他三艘测量船的任务海域都在纬度相对较高的南半球。那里的海况在南半球的春、夏季节要好一些,秋、冬季节则极为恶劣,不要说在海上执行测控任务,就是正常航行都难保安全。为此,“神舟”号飞船的发射时机就选择在与南半球相反的秋冬季节。
“神舟”飞船的发射之所以选择在夜晚而不是白天,是因为在漆黑的夜空中,火箭所喷射的火焰非常显眼和突出。这样飞船发射升空时,地面的光学跟踪测量设备易于捕捉到目标。
“神舟一号”:不载人的试验性飞船
“神舟一号”飞船由轨道舱(也叫工作舱)、返回舱(又称座舱)、推进舱(仪器舱)和一个过渡段组成。其中载人的轨道舱、返回舱可谓“一室一厅”。作为“一室”的返回舱是航天员在发射、返回和驾驶飞船时待的地方;作为“一厅”的轨道舱则是航天员工作和休息的场所。
为了增加航天员的活动空间,轨道舱被设置在返回舱的前面。轨道舱里面装有多种试验设备和试验仪器,可进行对地观测。其两侧装有可收放的大型太阳能电池翼、太阳敏感器和各种天线以及各种对接机构。
“神舟一号”飞船返回舱返回舱是航天员乘坐的舱段,也是飞船的控制中心。返回舱位于飞船的中部,它不仅和其他舱段一样要承受起飞、上升和轨道运行段的各种应力和飞行环境,还要经受返回时再进入大气层阶段的减速过载和气动加热。返回舱是密闭结构,前端有舱门,供航天员进出轨道舱。
推进舱通常是安装推进系统、电源、气瓶和水箱等设备的部位。位置在返回舱后面,所起作用主要是保障和服务,即为飞船提供动力,进行姿态控制、变轨和制动,并为航天员提供氧气和水。推进舱的两侧还装有20多平方米的主太阳能电池翼。过渡段则在飞船顶部,用于与其他航天器对接或进行空间探测。
在飞船顶部,还有一个8米高的逃逸救生塔,其上装有10台发动机。在发射飞船的火箭起飞前900秒到起飞后160秒期间(0千米~110千米),如发生故障,它能载着返回舱和轨道舱与火箭分离,并落到安全地带,使飞船上的航天员转危为安。
从外形来看,“神舟一号”飞船似乎比较简单,但它的内部构造却极其复杂,是由结构与机构、热控、制导导航与控制、推进、测控与通信、数据管理、电源、回收着陆、环境控制与生命保障、仪表与照明、应急救生、乘员、有效载荷13个分系统组成。位于飞船底部的推进舱,主管飞船的动力;位于飞船中部的核心舱段返回舱,是航天员升空、返回及生活工作的座舱,也是飞船的控制中心及与地面联络的通信中心;轨道舱的内部则安装了各种仪器,可用于科学试验及对地观测。13个分系统按其功能分别密布在三个舱段中,共同承担着“神舟”飞船遨游太空的神圣使命。在如此庞大而复杂的系统工程中,必须做到环环相扣,哪一个分系统出现问题,哪怕是一个极其微小的毛病,都有可能造成无法挽回的损失。
“神舟”飞船横空出世
经过工作人员的多重测试,船、箭、塔(逃逸塔)的联试终于过关。“神舟”飞船首次试飞只待择定发射日期,加注燃料后就可发射升空了。
“神舟一号”飞船原定于1999年11月8日至12日发射,但由于一些技术安全保障方面的原因,原定的发射日程向后延迟。当时,计算发射飞船的窗口时间就成为一个焦点。
飞船的发射,对发射时机有着比较特殊的要求。发射人员必须要选择一个适合发射飞船的时间范围,在这个时间范围内才可以将航天器发射出去。这个适合飞船发射的时间范围,专业术语叫“发射窗口”。根据发射时的天气、气象、天体活动情况和航天器执行任务的不同,发射的窗口时间也叫做发射窗口宽度,它有长有短,有的发射窗口时间长达几天,有的发射窗口只有几分钟。
当时,中国空间技术研究院是负责计算“神舟一号”飞船发射窗口时间的机构。因为11月15日至17日有降温,高空风速又超过了45米/秒,各种条件都不是很理想,而18日到22日之间,都有合适的发射窗口时间。综合多方数据,最后发射时间敲定在1999年11月20日。
1999年11月20日凌晨,酒泉卫星发射中心的发射场上,“神舟”飞船傲立在寒风之中。全部参试人员都肃穆地站立在“神舟一号”的脚下。寒风刮在脸上,冷冷的,刺得人脸生疼。一个简短的动员大会就在“神舟一号”的脚下召开了。工作人员面对“神舟一号”郑重宣誓——“神舟”飞船,我们绝不会辜负你对我们的期望,绝不会辜负祖国和人民对我们的期望!
从载人航天工程立项到1998年运输试验开始,科研人员已经潜心研制了六年。经过无数个日日夜夜的努力,付出了数不清的汗水和辛劳,中国的“神舟”飞船终于要横空出世了!
飞船只有腾空,才能展示它雄壮的力量。“神舟”飞船的成功发射与回收,将使我国成为继美国、前苏联之后第三个掌握载人航天技术的国家,这将成为我国航天史上的又一个里程碑。
此次发射选在甘肃酒泉卫星发射中心进行。为了进行载人飞船的发射,在发射场内新建了高达百米的发射塔。在发射塔上,大型运载火箭和试验飞船第一次展向世人展露了它的雄姿。运载“神舟”飞船的火箭是在“长征二号捆绑式”火箭基础上改进研制的“长征二号F”运载火箭。
“远望一号”测量船到达指定地点,各测量船、测量站准备完毕。
火箭系统燃料全部加注完毕,整流罩通风调温情况良好,各分系统进入发射前准备状态。
飞船系统燃料加注完毕,系统测试正常,8个分系统检查正常。
空军、海军、兰州军区、成都军区协调完毕,准备参加应急回收的伞兵部队已在机场待命。
巨大的船、箭、塔组合体像一个即将出征的勇士,静静地矗立在一望无际的西北大戈壁滩上,等待点火的庄严一刻。
飞船首次试飞,吸引了上万名参观者。人们不顾彻夜的寒冷,早早就在远处的戈壁滩上等候。
“神舟一号”成功发射升空
“1分钟准备!”酒泉卫星发射中心指挥大厅里传来0号指挥员的声音,“10、9、8、7、6、5、4、3、2、1,点火!”
橘红色的火焰从火箭尾部急速喷射出来,伴随着震耳欲聋的巨大轰鸣声,火箭携带着“神舟一号”飞船迅速升空,呼啸而去。
发射场上,观看的人群发出了激动人心的欢呼声。
程序转弯,火箭起飞12秒,一切正常。“逃逸塔分离!”“助推器分离!”“一级火箭分离!”调度员的声音回荡在空旷的发射场上。他每报告一个信息,发射场上都响起一片欢呼声。
“神舟一号”发射升空突然,大屏幕下面的一组数据跳变不停。前方一个测控站传来的数据显示:火箭飞行速度急速下降。
专家席上的一排人齐刷刷地站起来,紧张地盯着大屏幕。首长席上,每个人都瞪大眼睛。指挥大厅里似乎能听见心跳的声音。
大家在焦急之中,等来了北京航天指挥控制中心的声音:“船箭正常分离,火箭反推点火!”
火箭飞行约10分钟后,“神舟一号”与火箭分离,准确进入预定轨道。“神舟一号”入轨后,分布于地面测控站和身处太平洋、印度洋海域的“远望一号”“远望二号”“远望三号”和“远望四号”测量船接力式地对它进行跟踪测量,并把各项测量参数汇总到位于北京的指挥控制中心。地面各观测站在飞船飞行期间,还对飞船内部的生命保障、姿态控制系统进行充分的测试。在绕地球正常飞行了21小时后,地面指挥中心向飞船发出了姿态调整、轨道舱分离、反推发动机启动等一系列指令。21日凌晨3时,“神舟一号”顺利完成了返回地球的准备工作,进入返回轨道。再入大气层后,“神舟一号”按预定指令依次打开引导伞、减速伞和主伞,徐徐下落。在接近地面时,主伞自动抛落,着陆缓冲发动机在距地面仅1.5米时点火,进一步减速,使飞船平稳安全地落地。着陆点在内蒙古中部地区。
中国的载人航天之门从此被叩开
“神舟一号”的平稳安全降落,标志着中国载人飞船的首次不载人轨道飞行试验获得圆满成功。这一壮举揭开了中国航天史的新篇章。虽然“神舟一号”只是一艘试验飞船,很多技术功能还尚未完善,但是它的完美返回对中国、对全世界的震撼是巨大的,它打破了美国和前苏联在载人航天领域的垄断地位。中国的载人航天之门从此被叩开了。
此次发射第一次采用在技术厂房对飞船、火箭联合体垂直总装与测试,整体垂直运输至发射场,进行远距离测试发射控制的新模式。我国在原有的航天测控网基础上新建的符合国际标准体制的陆海基航天测控网,也在这次发射试验中首次投入使用。飞船在轨道运行期间,地面测控系统和分布于公海的4艘“远望号”测量船对其进行了跟踪与测控,成功进行了一系列科学试验。
“神舟一号”飞船的成功发射与回收,是我国航天史上的又一里程碑,标志着我国载人航天技术获得了新的重大突破,使我国载人航天事业的发展迈出了重要一步。
“神舟一号”是一艘不载人的试验飞船。此次进行的是它的首次研制型飞行试验,主要目的是考核运载火箭的性能和可靠性。“神舟一号”飞船落点偏差仅11.2千米,这一成果使我国成为继前苏联、美国之后世界上第三个掌握返回可再控入技术的国家,为实施载人飞行计划奠定了坚实的技术基础。
知识点运载火箭
运载火箭是由多级火箭组成的航天运输工具。其用途是把人造地球卫星、载人飞船、空间站、空间探测器等有效载荷送入预定轨道。它是在导弹的基础上发展的,一般由2~4级组成。每一级都包括箭体结构、推进系统和飞行控制系统。末级有仪器舱、内装制导与控制系统、遥测系统和发射场安全系统。级与级之间靠级间段连接。有效载荷装在仪器舱的上面,外面套有整流罩。
到目前为止我国共研制了12种不同类型的“长征”系列火箭,能发射近地轨道、地球静止轨道和太阳同步轨道的卫星。
从1970年到2000年的30年间,我国发射长征系列火箭共计67次,成功61次,发射成功率为91%。在1994~1996年年间曾一连几次发射失败,使我国在国际商业发射市场的声誉处于低谷。中国航天工业总公司经过一系列质量整顿后终于打了个翻身仗。自1996年10月到目前已连续25次发射成功,这在世界卫星发射界也是不多见的。
在我国运载火箭的发展初期,探空火箭的研制占有重要的地位,尽管它是结构简单的无控火箭,但却是新中国成立后的第一枚真正的火箭。从1958年开始,我国陆续研制出包括生物、气象、地球物理、空间科学试验等多种类型的探空火箭。
“神舟二号”:第一艘正样无人飞船
“神舟二号”飞船于2001年1月10日在酒泉卫星发射中心发射升空,飞船返回舱在轨道上运行7天后成功返回地面。“神舟二号”飞船是我国第一艘正样无人飞船。飞船由轨道舱、返回舱和推进舱三个舱段组成。
与“神舟一号”试验飞船相比,“神舟二号”飞船的系统结构有了新的扩展,技术性能有了新的提高,飞船技术状态与载人飞船基本一致。
第一位乘客是生理假人
“神舟二号”飞船航天员系统在“神舟二号”飞船上安装了仿真航天员——生理假人。
太空的环境条件是十分严酷的,特别是轨道空间存在高真空、高辐射和微重力三项特殊因素。这些既是空间资源,但又对航天员造成了不利的生存环境。
在航天员正式进入太空之前,为了保障航天员的生命安全,需要研究各种太空环境因素,以及飞船升空和返回过程中影响航天员的生物医学效应,以便为飞船工程设计提出医学和工效学的要求,对航天员实施周全的飞行医监医保措施,配置航天员专用的医监医保设备。
为完善航天员环境控制与生命保障系统,国外载人飞船的相关试验一般是从搭载小动物开始来试验,而我国则采用了更先进的现代装置——模拟假人。用假人模拟航天员所消耗的氧气与二氧化碳,通过先进的地面医疗监测台测试“航天员”的生理信号变化。
中国早期发射的是无人飞船,虽然只在里面安放了一个假人,但假人却不是看起来那么简单,虽然不吃不喝,但各种“器官”基本上都有:模拟呼吸系统、心电图传输、模拟血压装置……对人体生存环境的各种因素基本上都测量到了。
假人体内安装的氧气置换系统,可以像真人一样呼吸,吸入氧气,排出二氧化碳。地面值守的航天医生通过电视图像、双向通话、舱载医监设备,可以连续监测假人的心电、呼吸、血压、体温等生理参数,这些数据通过测控系统传输给地面医监台,供航天医生分析判断。
全方位立体测控
“神舟二号”飞船发射升空后,进入了距地球表面高度近地点为200千米、远地点为340千米的椭圆轨道。按照预定计划,这时要进行变轨,将飞船调整到距地球表面340千米高的圆形轨道上。变轨能否成功,将影响飞船能否在轨飞行和准确返回预定着陆区。
此时,在北京航天指挥控制中心内,大型计算机按照技术人员的指令,高效地对各种数据进行综合处理,迅速生成了飞船变轨的实施步骤。当飞船飞行至远地点高度时,地面控制人员下达了变轨指令,变轨指令通过相关测控站点的测控设备直接传给了飞船。在信号传输上,中国的设计人员采用了一种被称为透明传输的技术,它的采用,使得指令从发出到被飞船接收到只需要2秒钟时间。接到指令后,飞船上的发动机点火,在发动机的推力作用下,飞船成功地进入了圆形轨道。
“神舟二号”飞船在轨道上飞行31圈之后,在地球重力和气流阻力等多方面因素的综合影响下,飞船轨道高度在飞行中逐渐降低。这就需要通过控制飞船上发动机的点火时间和推力,使飞船始终保持在正确的轨道上飞行,这就是轨道维持。
控制和维持飞船的飞行轨道需要精确的轨道计算。地面发送的轨道控制数据如果出现毫厘之差,对在太空中飞行的飞船来说,调整后的轨道就有可能相差几十甚至上百千米。在北京航天指挥控制中心的统一指挥和调度下,陆海基航天测控网负责实施首次轨道维持。西安卫星测控中心首次启用了最新研制建成的测控网网络管理系统,实现了测控资源的最优配置和测控设备的远程监控,大大提高了测控网的可靠性和有效性。12日20时24分,进行轨道维持的控制数据指令向飞船发出。不久,从飞船上传回的数据表明,飞船已接收到指令并成功进行了轨道调整。这种轨道维持,在“神舟二号”飞船的飞行全过程中,进行了多次。
当“神舟二号”飞船绕地球飞行第107圈,经过南大西洋上空时,在这里等待的“远望三号”远洋测量船会向飞船发出返回指令,16日18时33分,按预定计划,飞船飞临“远望三号”上空。舰载雷达天线稳稳地跟上了刚从海平面出现的“神舟二号”飞船。与此同时,船载其他各测量通信设备也按预定方案,准确及时地捕获跟踪目标,获取飞船各种有效数据。通过“远望三号”的遥控指令,飞船进行了姿态调整、舱体分离。此时从船上的显示屏中,可以看到一个亮点正在向下方运动,这就是分离后的返回舱,它已从飞行姿态转为返回姿态并开始返回。
“神舟二号”在太空飞船在返回轨道上运行了大约24小时后,进入距地面80千米的大气层。此时,由于返回舱表面与大气层的剧烈摩擦产生的等离子层在飞船外围形成了电磁屏障,致使地面与飞船失去联系。但经过严格的轨道计算,技术人员可以估计出飞船的大致降落区域,地面搜寻人员早已等待在内蒙古中部的草原上。返回舱在落地后发出信号,让搜寻人员确定它的具体落点。此时,4架直升机和6辆搜索车飞快赶向着陆点。
至此,中国载人航天工程的第二次飞行试验获得了圆满成功。
“神舟二号”飞船上还装载了一台可制备多种晶体材料的“百宝箱”——多工位空间晶体生长炉。由于太空中几乎没有重力,在这种特殊的环境中,各种比重不同的物质可以在一起“和平共处”,几乎没有地面上的对流和沉淀等现象,可以生长出地面上得不到的结构完整、性能优良的晶体材料。因此,在飞船上进行空间材料科学试验,对于获取高品质的功能晶体材料,了解晶体材料生长过程中对晶体品质的影响、指导地面批量生产具有重要意义。
“神舟三号”:搭载“模拟人”
2002年3月25日22时15分,我国在酒泉卫星发射中心成功发射了“神舟三号”飞船。在“神舟三号”飞船中,同样装有人体代谢模拟装置、拟人生理信号设备以及形体假人,能够定量模拟航天员在太空中的重要生理活动参数。此外,还首次进行了逃逸系统试验。逃逸系统可在火箭发射和升空阶段出现意外故障的紧急情况下,将飞船带离危险区域,确保航天员的生命安全。
与“神舟一号”“神舟二号”飞船相比,“神舟三号”从外形和结构上并没有什么区别,所不同的只是在内部所做的一些改进。
具体来说,“神舟三号”飞船是由轨道舱、返回舱和推进舱三部分组成。返回舱在飞船的中部,为密闭结构,其前端有舱门,供航天员进出轨道舱使用。其外形为大钝头倒锥体的钟形。
“神舟”号的返回舱容器是世界上已有的近地轨道飞船中最大的一个。返回舱是航天员的座舱,是飞船唯一可再入大气层返回着陆的舱段,舱内设置了可供三个航天员斜躺的座椅,座椅下方设有仪表盘和控制手柄、光学瞄准镜。
与前两艘“神舟”飞船一样,轨道舱也是位于飞船的前端,其外形为两端带有锥角的圆柱形,在其两侧装有可收放的大型太阳能电池阵、太阳敏感器和各种天线以及各种对接机构。轨道舱是航天员在轨道飞行期间的生活舱、试验舱和货舱。推进舱位于飞船的后部,形状像一个圆筒,主要用于飞船的姿态控制、变轨和制动。推进舱安装有四台大推力的主发动机和平移发动机,推进舱的两侧还装有20多平方米的主太阳能电池阵。
和日凌擦肩而过
2002年2月2日,负责运输火箭的专列驶进了酒泉卫星发射场。由于准备工作做得比较充分,进场前各种问题都解决了,复查工作也做得认真细致,所以飞船与火箭的各项测试都非常顺利。春节还未到,火箭系统的单元测试就已经完成了。
船、箭、塔联合模拟测试先后进行了三次,都顺利过关。2003年3月18日,飞船和火箭完成了对接,等待转运至发射塔。按照载人航天工程指挥部的计划,船、箭、塔联合体定于20日转运到发射塔,25日准备发射。
“神舟三号”升空“神舟三号”飞船发射窗口定下来时,与日凌中断赶到了一起。关于日凌中断,有必要做一下解释。我国春分、秋分前后,静止卫星处于太阳与地球之间,地面通信站对准卫星的同时,也对准了太阳,这就是平常所说的“日凌”。在日凌期间,强大的太阳噪声可能使卫星通信无法正常运行,这种现象就称为日凌中断。
一般来说,日凌中断不会持续太久,大概只有5分钟,只要不赶在测控站的覆盖范围内,就不会影响对“神舟三号”飞船的测控。但是,如果按照已经确定的发射时间,“远望三号”测量船却要和日凌擦肩而过。“远望三号”测量船担负着飞船返回段的测控任务,要对飞船注入返回数据,如果在飞船返回时出现日凌中断,就可能失去控制,这可不是个小问题。戈壁滩的风大,春天尤甚,而发射窗口也受大风的影响。
日凌问题让基地的专家争论了好几天。算来算去,几个专家各有各的担心,有人怕万一通信中断,再建立时如果出现意外,或者信号受到干扰,将会使“神舟三号”飞船的发射试验充满很大的变数。经过专家们的多方论证,终于决定:25日发射,时间推迟5分钟。
随着总指挥的下达命令:“点火!”“长征二号F”捆绑式火箭载着“神舟三号”飞船飞入太空,并顺利实现变轨,进入了预定轨道。这标志着“神舟三号”飞船发射成功!
归来的日子
4月1日,是“神舟三号”飞船返回舱回归地球怀抱的日子。4月的内蒙古草原空旷而沉寂。“神舟三号”飞船返回舱按照预定计划,在太空飞行7天后,即将返回地球。
4月1日下午4时,离飞船着陆还有50分钟,地面搜索队准时到达着陆场。不一会儿,天空传来飞机的轰鸣声,4架直升机按计划到达着陆场上空,它们将从4个方位跟踪和搜索穿过大气层并降落到地面的飞船。
地面上,数十辆新型测控设备车在两个高地上展开,各种跟踪测量设备翘首以待,时刻准备捕获目标。地面搜索分队的车载仪器不断接收着来自北京指挥控制中心的信息。指挥人员密切监视着显示屏上的飞船飞行状态。一张立体搜索网在广阔的天地间悄然展开。“飞船调姿”、“轨道舱分离”、“制动开始”、“推进舱分离”、“再入大气层”,遍布各地的测控站和海上测控船依次发出了指令。
16时03分,“神舟三号”飞船经过一系列的太空动作,脱离轨道,按照设计的轨迹,以惊人的速度与大气层剧烈摩擦,“神舟三号”准确返回像一个火球般朝地球奔来。终于,飞船进入黑障区,地面与飞船通信暂时中断,飞船要在黑障区运行数分钟。
16时38分,飞船降落主伞打开!只见在蓝天白云间出现了一个五彩的斑点,“神舟三号”张着巨大的降落伞向地面飘来。
“神舟三号”回来了!表皮被大气层烧灼成深褐色的返回舱平稳地降落在地面上。飞船一切正常,完好无损。
一个永载中国航天史册的时刻——2002年4月1日16时51分,3月25日我国从酒泉载人航天发射场发射升空的“神舟三号”飞船返回舱,在遨游太空6天18小时、在预定轨道上环绕地球运行108圈、巡天540余万千米后,准确降落在内蒙古中部地区,我国载人航天第三次飞行试验获得圆满成功!
“神舟三号”飞船的轨道舱与返回舱在太空按计划正常分离后,轨道舱在太空正常运行了180多天,环绕地球飞行共2821圈,顺利完成了空间环境监测、大气成分监测、红外探测等一系列科学试验,获取了一大批有价值的科研数据。在轨道舱运行期间,北京航天指挥控制中心先后对其进行了几十次轨道维持和飞行模式控制,确保飞船轨道舱在不同飞行控制模式下,进行预定的各项载荷试验。
科学试验获得重要成果
“神舟三号”飞船归来之后,中国科学院的研究人员发现,在空间环境独特的微重力条件下,此次重点进行的空间生命与空间材料科学领域的相关试验,获得了在地面环境条件下无法取得的重要成果。
在“神舟三号”飞船上进行的空间生命科学研究,包括蛋白质和其他大分子的空间晶体生长试验以及生物细胞培养试验。飞船上装载有我国自行研制的第二代空间蛋白质结晶装置,具有两种不同的蛋白质结晶方法和双温控特点,所选用的16种蛋白质大部分是利用我国现有的生物资源制备的。经过飞行试验,研究人员在空间微重力环境中获得了结构完整的蛋白质晶体样品,这将有利于研究蛋白质结构与其特殊功能信息的关系。这些研究成果对于获取以至生产高纯、高效的生物制品和进行生物药品研制具有重要意义。
在生物细胞培养试验方面,专家们对具有制药前景的动植物细胞的空间培养方法,以及微重力对细胞生长增殖代谢合成和分泌生物活性物质等方面进行了研究。用于本次试验的4个细胞样品中,有两个样品可产生抗天花粉蛋白抗体和抗衣原体类性病的抗体。
此外,专家们还进行了多种材料的空间晶体生长和制备以及工艺方法的探索研究。如用于制造微波器件、微波集成电路和超高速集成电路关键电子材料的锑化镓晶体;用于制造红外探测器基底材料的碲锌镉晶体;用于光信息存储功能材料的氧化物激光晶体硅酸铋,以及其他在航空、航天领域具有重要应用前景的新型合金材料。对这些空间材料的研究,有助于加深对材料制备过程物理本质的认识,指导和改进地面材料的制备工艺,具有潜在的巨大经济效益。
知识点“神舟三号”新发现:搭载太空种苗生长超速
“神舟三号”飞船从太空带回的试管种苗,目前出现了令科学家振奋的长势:虽然返回地面才10来天,但生长速度却是正常情况的5~7倍。
专家称,这是我国首次成功搭载并返回地面用于应用推广的植物试管苗,而此前通过返回式地面卫星或飞船搭载并成功返回的都是种子。从太空返回后,种苗生长状况良好,平均长幅高达3~5厘米,比正常情况高出5~7倍。这说明此次搭载非常成功,飞船的生保系统很完善,温度、光照、空气等能够满足植物的正常生长需要。
我国太空植物包括小麦、水稻、番茄、田椒、黄瓜等共有12个品种,所谓的太空植物品种是指已通过实验阶段,通过国家有关部门的审定,并有一定的种植规模的太空植物。目前河北、甘肃、山东、四川等省都有大面积太空蔬菜种植基地。
航天育种可以缩短育种周期。通过传统技术培育出一个新品种平均需要10年左右的时间,而航天育种则只需5年左右的时间;另外在太空中植物基因变异率高,能够更快得到有利于人类的变异品系。比如目前已经开始大规模种植的太空黄瓜,亩产量比普通黄瓜高20%左右,而且口感好,抗病性好。
“神舟四号”:最接近载人状态的飞船
2002年12月30日0时40分,我国自行研制的“神舟四号”无人飞船在酒泉卫星发射中心,发射升空并成功进入预定轨道。这是我国载人航天工程的第四次飞行试验。
按照正式载人飞行的要求
2002年12月30日凌晨,酒泉载人航天发射场上空星空灿烂。高100多米的飞船发射塔旁,矗立着“长征二号F捆绑式”大推力运载火箭,火箭的顶部托举着“神舟四号”飞船。0时40分,震天巨响中,火箭腾空而起,疾速飞向太空,火箭尾部喷射出的长长烈焰,在夜幕长空划下一道绚丽的彩虹。
十几分钟后,“神舟四号”飞船成功进入预定轨道。“神舟四号”飞船的发射成功,标志着我国载人航天事业取得了新进展,向实现载人飞行又迈出了重要一步。
这次发射和飞行试验是严格按照正式载人飞行的要求进行的。不仅设立了若干陆上应急救生区和海上应急救生区,而且救护人员也全部到位并进行了有关演练。飞船在轨飞行期间,在北京航天指挥控制中心的统一调度下,有关测控站和“远望号”远洋测量船,将对飞船进行持续跟踪、测量和控制。
另外,此次运载发射“神舟四号”飞船,是长征系列运载火箭的第69次飞行,也是自1996年10月以来,我国航天发射连续第27次获得成功。
飞船发射场是已经相对成熟和完善的酒泉卫星发射中心,这里建有完善的发射测量、控制、通信、指挥系统和适应航天员需要的设备设施,以及备份着陆场和应急救生医疗中心。
这一切,都是严格按照正式载人飞行的要求来配备和演练的。
模拟航天员升空
“神舟四号”飞船的“身体”状态与前两艘飞船基本一样,由推进舱、返回舱和轨道舱及轨道舱前端的附加段组成,并由“长征二号F”运载火箭发射。飞船进入远地点343千米、近地点200千米的椭圆轨道,飞行5圈(每圈约90分钟)后进行变轨,然后开始在距地343千米圆轨道上自主飞行7天,共108圈。
“神舟四号”飞船据相关专家透露,“神舟四号”上的“乘客”和“神舟三号”上的是同一个“人”,是一个利用仿真技术做成的高仿真模拟人,包括头、躯干、四肢等14个部分。“他”体重70千克,身体每一部分的形状与真人基本一致。当“他”被安装在飞船座椅上时,其姿态能够与载人姿态保持一致。“他”可以模拟航天员在太空生活时的脉搏、心跳、呼吸、饮食和排泄等多种重要生理活动,并随时受到地面指挥中心的监控。
与“神舟三号”飞船相对比,“神舟四号”飞船的生命保障系统及相关的试验条件更为完备。太空辐射是航天员安全的最大威胁,“神舟四号”为航天员的太空卧室装配了绝对防辐射的设施。飞船上安装了自动和手动两套应急救生装置,无论是在轨飞行中还是在返回时发生意外,飞船上的救生系统会自动启动;万一自动装置出现故障,船上的手动系统完全可以“抵挡”,航天员绝不会坐以待毙。
飞船的返回舱也非常神奇,它返回地面后,即便不能马上被发现,舱内为航天员配备的救生物品也足以保证航天员在陆上生存48小时、海上生存24小时。返回舱里还有一套气囊,一旦落入水中,3吨重的返回舱也不会沉入水底,而会漂在水面,等待救援。
特殊“乘客”体验太空游
因为机会难得,此次“神舟四号”上照例有一批特殊“乘客”幸运地获准搭乘飞船体验太空游。据介绍,在这些“乘客”中,也有“正选”和“候补”之分。所谓“正选”,是指飞船上的有效载荷部分,共有52件科研设备随船进行科学试验;所谓“候补”,则是指为了补足飞船返回舱内额定重量而附加的部分搭载试验品。
“正选”的52件科研设备跟随“神舟四号”飞船,开展了微波遥感对地探测、空间环境综合监测和生物技术研究试验等科学研究。
对地探测是“神舟四号”应用系统科学试验中最重要的一项任务,也是“神舟四号”试验设备中的“主载荷”。通过微波遥感器这只“千里眼”,地面降水、土壤水分、海面温度、海面风速等信息指标就尽在掌握之中。
空间环境综合监测的任务是研究空间环境及其变化,以确保航天器和其在不久的将来载人时航天员的安全。这是“神舟四号”空间科学试验的一个重要任务。
生物技术试验空间环境特有的微重力、高能辐射是新型药物的天然“梦工厂”。通过试验,科学家们能了解在地面环境下不可获知的一些生命本质特征,从而进一步揭示生命的奥秘。细胞培养仍是本次试验的代表。
“候补”乘客主要来自空间技术育种研究中心。小麦、水稻、杨树、葡萄、牡丹、青椒、西红柿等植物的种子一同随“神舟四号”遨游太空7天。
一次近乎完美的回归
2003年1月5日,经过6天零18小时的飞行,“神舟四号”飞船即将回归。
2003年1月5日,内蒙古草原中部一个茫茫无边的戈壁滩——中国北部最寒冷的地区之一。夜幕已降临,西北风呼啸着,气温已经降至-29℃。
忽然,一连串清晰而响亮的报告声,在前置雷达站的调度指挥车里响起:
“飞船调姿!”
“轨道舱分离!”
“制动开始!”
“推进舱分离!”
一次次的报告紧紧牵动着每个测控站、测量船、前置调度指挥车里的人们甚至是全国人民的神经。
“进入大气层!”监测员再次报告发现。
“各回收队注意,各回收队注意!飞船已经进入大气层,请各分队准备好,开始搜索工作!”指挥员庄严地发出了命令。
“轰轰!”
巨大的声响响彻天空。
“距地面——100千米!”
监测员的声音又一次响起。昏暗的天空中,一个巨大的、闪着光的火球风驰电掣般滑落。
巨大的屏幕,火光与暗夜的鲜明对比震撼着现场每一个人的心。
“80千米——啊!信息不稳——”
“信息中断!”
监测员的声音一响起,霎时,偌大的大厅像是失去了一切的活力,深深地陷入了一种罕见的寂静。
时间:1秒、2秒……
“发现目标!回收一号发现目标!”
激昂的报告声终于再次在人们耳边响起。短短的几分钟,像是刚刚经历了一场马拉松赛一样,每个人都忍不住长长地舒了口气。飞船终于又一次安全地越过了“黑障区”。
虽然已经经历过多次的回收试验和实践,但每个人都清楚地知道,一旦飞船进入大气层,就会在飞速下滑的同时与大气层发生猛烈摩擦,不仅会引起飞船表层的剧烈燃烧,而且由于产生的等离子层会形成电磁屏,在这个时候,飞船和地面的通信是不可能继续的。如果飞船真的在这个时候出现任何问题,那么在如此短的时间里、在如此遥远的距离里,所有的地面系统是无法采取任何挽救措施的。
飞船依然在急速下落。“回收2号发现目标!”当飞船距地面30多千米时,2号测量站的雷达终于稳稳地锁定了目标。
2003年1月5日,中国的“神舟四号”航天飞船终于凯旋。
“神舟四号”着陆点距离理论落区的中心点约10千米,落点达到了近乎完美的程度。中国人用事实向全世界证明:中国的“神舟”飞船完全攻克了精确降落的技术难关。
知识点“神舟四号”——“太空瘤苗”制备迈出第一步
“神舟四号”运载火箭搭载升空的肿瘤细胞在返回地面后,科学家获得了几千株经过太空特殊环境洗礼的细胞。科研人员对返回地面的细胞进行认真研究后发现,细胞的形态已发生变化,它意味细胞的遗传性状可能发生改变。这表明太空诱变肿瘤细胞实验取得初步成果,科学家在制备新型“太空瘤苗”的道路上迈出了可喜的第一步。
据专家介绍,肿瘤疫苗是主动免疫治疗肿瘤的主要方法,现阶段主要有细胞瘤苗、亚细胞瘤苗、分子瘤苗和基因瘤苗4种类型,但迄今为止,肿瘤疫苗还未有令人振奋的治疗效果,主要原因在于肿瘤的免疫性不强。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源