“黄金分割”被天文学家开普勒称为几何学两大瑰宝之一。“黄金分割”最早的发现者当数古希腊著名的数学家攸多克萨斯。他在研究比例时,发现了一个有趣的线段中外比性质,即把已知线段分成两部分,使其中的一部分是全部线段与另一部分的比例中项。关于线段中外比问题,攸多克萨斯得到如下结果:如果线段AB上有一点P,把线分成两部分AP、BP,且PB∶AP=AP∶AB,则①P为线段AB的中外比点,AP的长为中外比数;②设AB=1,则中外比数AP=5-12=0.618…。
黄金分割
自从攸多克萨斯发现中外比后,它的内在价值不断被人们在实践中发掘。中外比的最大神奇表现为它的美学价值上。人们通过测量发现维纳斯雕像的下身与上身的比近乎为0.618。可见,当年雕塑家就已知道了黄金分割的应用。
到了中世纪,中外比更被人们所敬仰,并且披上了神秘的外衣。
帕乔利称之为“神圣比例”;天文学家开普勒称之为“神圣分割”;画家达·芬奇称之为“黄金分割”。
在数学中,还有一种黄金矩形(宽长比为黄金数)。它是各种矩形中看起来最顺眼,也是最具美感的一种。国旗就是这种矩形。黄金矩形还有一种奇特而美妙的性质:可以分成一个正方形和另外一个小黄金矩形。
几何学的璀璨明珠——勾股定理
著名数学家、天文学家开普勒曾把毕达哥拉斯定理和黄金分割喻为几何的两大宝藏。毕达哥拉斯定理即为勾股定理。它是由古希腊数学家、哲学家毕达哥拉斯最早发现和证明的。
勾股定理的发现还有一个动人的故事。有一天,毕达哥拉斯到朋友家做客,朋友家的地面是用许多黑白相间的全等的等腰直角三角形砖铺砌而成的。这个美妙的图形深深吸引了他,他聚精会神地看着地面。忽然,他发现直角三角形的两边长的平方和恰好等于斜边的平方。这个惊人的发现使他欣喜若狂,他认为这是神的赐予,于是他杀了100头牛作为报答。因此又有人把勾股定理称为“百牛定理”。
勾股定理像一颗璀璨的明珠,使不少人为之倾倒。现有的证法至少有370种,使它成为世界上证法最多的定理。
勾股定理在我国数学史上也有光辉的一页。夏禹治水时就已用到勾股术,开创了世界上最早使用勾股定理的先河。我国最早的数学著作《骨髀算经》中记载了“勾三、股四、弦五”的问题。
数学的“圣经”——《几何原本》
《几何原本》古希腊数学家欧几里得一生最大的功绩就是完成了《几何原本》(简称《原本》)这一数学史上的巨著。《几何原本》是数学史上的一个伟大的里程碑。除《圣经》之外,没有任何一本著作,其使用、研究与印行之广泛能与《原本》相比。2000多年来,它一直支配着几何的教学,因此,有人称《原本》为数学的《圣经》。
《原本》全书共13卷。第1卷,给出了欧几里得几何学的基本概念、定义、定理、公理、公式等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的理论;第11卷,立体几何;第12卷,利用“穷竭法”证明圆面积的比等于半径平方的比,球体积的比等于半径立方的比等;第13卷,正多面体。
《原本》于明朝传入我国。当时意大利的传教士利玛窦与中国的徐光启合译了《原本》的前6卷,于1607年出版,定名为《几何原本》。《原本》的最后译完应归于清代的中国数学家李善兰与英国的伟烈亚力,他们合译了《原本》的后7卷。《几何原本》在中国出版后,很快就传播开来。
“下金蛋的母鸡”——费马大定理
法国数学家费马在数论方面有突出的成就,被誉为“数论之父”。费马闻名于世,是与“费马大定理”是分不开的。
约在1637年,费马在读丢番图的《算术》时,对其中的一个命题“将一个平方数分为两个平方数;将一个四次方数分解为两个四次方数;或者一般地将一个高于二次幂的任何乘幂分成两个同次幂之和?”他的回答是否定的。这个定理,即当整数n>2时,关于x、y、z的方程xn+yn=zn均无整数解,这就是所谓的费马大定理。费马说:“我想出了这个论断的一个真正奇妙的证明,只是这里的空白狭小,不容我把它写下来。”
费马对于这个定理的“奇妙证明”,始终没有找到。但这个定理吸引了许许多多的数学家,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。在证明费马大定理的过程中产生了许多数学成果,拓宽了数学的领域,促进了数学的发展。因此德国的数学家希尔伯特说:“这是一只下金蛋的母鸡。”
中国剩余定理——孙子定理
《孙子算经》我国古代的重要数学著作《孙子算经》中有一问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”答曰:“二十三。”这段话译成白话是:“有一堆东西不知有多少个,如果三个三个数,剩二个,如果五个五个数,剩三个,如果七个七个数剩二个。问这堆东西有多少?答案是二十三个。”这个问题的解决,叫“孙子定理”,国外称为“中国剩余定理”。
这个问题的解法明朝程大位写成一首诗是:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。”这首诗里隐含着70、21、15、105这4个数,只要牢记这4个数,解答此题便轻而易举了。在《孙子算经》中详细介绍了这种奇妙算法:凡是每3个一数最后余1的,就取1个70,最后余2的,便取2个70;每5个一数最后余1的,就取1个21,余2的,就取2个21;每7个一数最后余1的,就取1个15,余2的取2个15。把这些数加起来,如果得数比105大,减去105,所得的两组数便是众多答案中最小的一个和第二最小的。比如,上题是取2个70,取3个21,取2个15。由于2×70+3×21+2×15=233,比105大,减去105,再减105,得23。只此寥寥几步,便解了此题,可谓神奇。
取得两项世界冠军的《九章算术》
《九章算术》《九章算术》是我国古代数学园地中的一朵奇葩。它的内容之丰富,水平之高,影响之大,堪称中国古代数学著作之最,可与欧几里得的《几何原本》媲美。现在中小学课程中的分数四则、比例、面积和体积、开平方、开立方、正负数、一次方程组、二次方程、勾股定理,以及各种应用问题的解法内容,在《九章算术》里,都有深入的研究。
《九章算术》系统地总结了战国、秦、汉时期的数学成就,后经许多人的增补,形成了现在内容。全书共九章,内容如下:(1)方田(分数四则算法,平面形面积求法);(2)粟米(粮食交易问题,含有比例算法);(3)衰分(比例分配问题);(4)少广(面积问题的逆运算,含有开平方和开立方的方法);(5)商功(工程问题和立方体形体积求法);(6)均输(粮食管理运输问题);(7)盈不足(解决盈亏问题的算术方法);(8)方程(一次方程组解法及含有正负数加减法则);(9)勾股(勾股定理及简单测量问题)。
《九章算术》里的方程组的解法与正负数加减运算的法则,是我国古代在数学领域中取得的两项世界冠军。前一个问题比欧洲早了1500多年,后一个问题比欧洲早1200多年。
中国古代数学的十大瑰宝——《算经十书》
我国古代千余年间陆续出现了10部数学著作,被称为中国古代数学的十大瑰宝。它们是(1)《周髀算经》:这是一部我国流传至今最早的数学著作,也是一部天文学著作。在数学方面主要讲了学习数学的方法。(2)《九章算术》:是算经十书中最重要的一种。(3)《孙子算经》:较系统地叙述了算筹记数法和算筹的乘、除、开方以及分数等计算的步骤和法则。(4)《五曹算经》:北周甄鸾所著,全书共收集了67个问题。所谓“五曹”是指五类官员,即“田曹”、“兵曹”、“集曹”、“仓曹”、“金曹”五大类问题。(5)《夏侯阳算经》:全书共3卷,收有83个数学问题,内容与《孙子算经》类似。(6)《张丘建算经》:南北朝时期的著作,除《九章算术》的内容外,还有等级数问题、二次方程问题、不定方程问题。(7)《海岛算经》:魏晋时期刘徽著,以测海岛的高、远而得名。(8)《五经算术》:北周甄鸾著,对《易经》、《诗经》、《周礼》、《礼记》、《论语》、《左传》等儒家经典中与数学有关的地方加以注释。(9)《缀术》。(10)《缉古算经》。以上10部书统称为《算经十书》。
“哥德巴赫猜想”只差最后一步
哥德巴赫猜想原稿抗日战争刚结束后不久,福州市的一个中学“英华书院”来了一位知识渊博、诲人不倦的数学教师。在数学课上他给学生们讲了许多有趣的数学故事。有一次,他向学生们讲了“哥德巴赫猜想”的难题,并且说:“自然科学的皇后是数学,数学的皇冠是数论,‘哥德巴赫猜想’则是皇冠上的明珠。”这些话,深深地打动了学生陈景润的心,鼓舞着他立志要去摘取这颗明珠。有志者,事竟成。经过20多年的奋战,陈景润已经离拿下这颗明珠只差一步了。那么,这颗明珠到底是怎么回事呢?
200多年前,德国数学家彼得堡科学院院士哥德巴赫,曾以大量的整数做试验,结果使他发现:任何一个整数,总可以分解为不超过三个素数的和。但是,他不能给出严格的数学证明,甚至连证明该问题的思路也找不到。因此,1742年6月7月,他把这个猜想写信告诉了与他有15年交情,当时在数学界已享有盛誉的朋友欧拉。信中说:“我想冒险发表下列假定:大于5的任何整数,是三个素数之和。”欧拉经过分析和研究,在回信中说:“我认为每一个大于或等于6的偶数都可以表示为两个奇素数之和”。欧拉又进一步将这个猜想归纳为以下两点:
(1)任何大于等于6的偶数都可以表示为两个奇素数之和。
(2)每个不小于9的奇数都可以表示为三个奇素数之和。
我们可以利用一些具体的数字进行验算,看看欧拉上述两个猜想的正确性,如
6=3+318=11+7
8=3+520=13+7
10=5+5……
12=5+748=29+19
14=7+7……
16=13+3100=97+3
9=3+3+3
11=3+3+5
13=3+3+7
……
27=3+11+13
……
103=23+37+43
同时,欧拉的两个命题是有联系的,容易发现:第二个命题是第一个命题的直接推论,若第一命题正确,就能非常简单地推出命题二是正确的。
因为,假设命题一正确,我们设奇数A≥9,则
A-3≥6
而且A-3是偶数。
由命题一可知,必有两个奇素数n1、n2,使得
A-3=n1+n2
所以
A=3+n1+n2
因此,命题二是正确的。
由此可见,命题一的正确性被证明了,“哥德巴赫猜想”也就彻底解决了。
哥德巴赫问题所以引起人们极大的关注并激励着不少人为解决这一难题而奋斗一生,其原因就在于:若解决这样的问题就必须引进新的方法,研究新的规律,从而可能获得新的成果。这样就会丰富我们对于整数论以及整数论与其他数学分支之间相互关系的认识,推动整个数学学科向前发展。
1900年著名德国数学家希尔伯特在国际数学会的演讲中,把哥德巴赫猜想看成是以往遗留的最重要的问题之一。1921年英国数学家哈代在哥本哈根召开的数学会上说过,哥德巴赫猜想的困难程度可以和任何没有解决的数学问题相比。200多年来,这个难题吸引了世界许多著名的数学家,他们付出了艰苦的劳动。虽然这个问题还没解决,但是进展很大,19世纪数学家康托耐心地试验了从2到1000之内所有偶数命题——都对;数学家奥倍利又试验了从1000到2000以内所有偶数命题——也是对的。即他们二人连续验证了在2到2000这个范围内,任何大于或等于6的偶数都可以表示为两个奇素数之和。
1911年数学家梅利又指出从4到9000000之内绝大多数偶数都是两个奇素数之和(即他共验证了449986个偶数命题是正确的,只有14个偶数他没能验证出来)。后来更有人一直验算到了3.3亿,都表明哥德巴赫猜想是正确的。上述一些数学家们虽然做了大量的工作,但都没有离开验算的轨道。
1923年两位英因数学家希尔德和立特伍德在解决哥德巴赫问题的探索中得到新的进展。他们虽然没有解决这个难题,但是却使这个问题与高等数学中的解析因数论建立了联系。一方面为解决这个问题搭了第一座桥,使哥德巴赫问题解决的途径从验证阶段踏上了解析证明的新征程;另一方面在两个不同的学科间发现了微妙的联系,从而会引申出许多新的发现,为制定新的理论打下基础。
直到1930年,这个难题才有了决定性的转折,苏联青年数学家西涅日耳曼采用筛法和数列密度法证明了“任一大于等于9的自然数,一定可表示为不超过300000个奇数之和”(注意:任一大于9的自然数,上述定理都成立,则任一大于9的偶数,上述定理当然也成立)。这个结果与哥德巴赫猜想相比,似乎非常滑稽可笑,然而,正是这个定理为证明哥德巴赫问题找到了新的方法。西涅日耳曼感到要从哥德巴赫问题的原来形式去证明是徒劳的。因为,一个能表示成几百个素数之和的数,未必能表示成三个或两个素数的和,可是一个数若能表示成一百个素数的和的问题得证,就能使一个数表示成三个或两个素数之和的问题的证明变得容易了。在数学上为了证明某个命题,常常需要把它变化一下形式,即变成它的等价命题或者是放低要求的命题。新命题证完,原命题立即得证或者容易得证。
西涅日耳曼提出:是否存在一个完全确定的,但又是尚未知道的整数,使任何自然数都可表示成不超过C个素数和的形状?换言之,不论N是怎样的自然数,总可以将它写成
N=P1+P2+P2+…+Pn
的形状。其中Pi(i=1,2,…n)均是素数,而n一定是小于C(至多等于C)的整数。若能证明C=2,那么,哥德巴赫问题就能证明了。西涅日耳曼开拓了这条新路,找到了解决老问题的新方法,受到人们的称赞,并把C称为西涅日耳曼常数。有开拓者就有后继人,后来又有不少数学家把C这个数降到67,也就是不论怎样大的偶数,都可以表示为至多是67素系数之和的形式。
1937年苏联另一位数学家维诺格拉道夫,把西涅日耳曼常数又降到4,之后又凭借他自己创立的一种新的数学方法——估计指数和的方法,证明了:每一个充分大的奇数都一定可以表示为三个奇素数之和,将哥德巴赫猜想的第二个命题解决了。正是由于维诺格拉道夫创造了新的数学方法,解决了“半个”世界著名难题所取得的巨大成就,被授予社会主义劳动英雄的称号,并获得了斯大林奖金。
我国对这个问题的研究也有很长的历史,并且也取得了不少研究成果。这是非常值得我们自豪的。
大家非常熟悉的我国著名数学家华罗庚教授,早在20世纪30年代就开始这项研究工作,并取得了一定的研究成果。新中国成立后,在华罗庚、闻嗣鹤两位教授的指导下,我国一些年轻的数学家不断地改进筛法,对哥德巴赫猜想的研究,取得了一个又一个可喜的研究成果,轰动了国内外的数学界。
我国青年数学家陈景润在研究哥德巴赫问题上,有着惊人的毅力和顽强的精神。1965年苏联数学家维诺格拉道夫、布赫斯塔勃和朋比利又证明了:偶数=(1+3)。这个结果在当时已经是很了不起的成就了。然而,陈景润还是不畏劳苦地攀登着。由于他精心的分析和科学的推算,不断地改进“筛法”,大大地推进了哥德巴赫问题的研究成果,取得了世界上领先的地位。1973年他终于证明:每一个充分大的偶数,都可以表示成一个素数及—个不超过两个素数乘积的和,即:
偶数=(1+2)
若把两个素数乘积变成一个素数即:
偶数=(1+1)
这样,哥德巴赫问题——这颗皇冠上的明珠就要被摘下来了。
陈景润的成就,在国内外引起了高度的重视。我国数学家华罗庚和闻嗣鹤都曾高度评价他的研究成果。英国数学家哈伯斯坦和西德数学家黎希特合著的《筛法》一书,原有十章,付印后又见到陈景润的(1+2)的成果,感到这一成就意义重大,特为之添写了第十一章,标题叫做“陈氏定理”。
哥德巴赫猜想离彻底解决仅一步之差了。但是,这即将登上顶峰的最后一步,也是极端困难的一步。不过看到陈景润的研究成果,看到我国数学才能卓著的年轻人不断涌现,看到广大科学家为攻克一个个堡垒而表现出来的顽强毅力,相信,登上顶峰、走完这艰苦的一步,肯定是为期不远了。
聚合中文网 阅读好时光 www.juhezwn.com
小提示:漏章、缺章、错字过多试试导航栏右上角的源