宇宙进化史-宇宙的七个谜
首页 上一章 目录 下一章 书架
    有关宇宙,我们掌握的知识还是微乎其微的。在我们看来,宇宙就是一个硕大的谜,其中又包括了许多谜,如宇宙中最早的生命是怎样诞生的?太阳、月亮、星星为什么会发亮?宇宙中还有第二个地球吗?有关这些类似的问题备受世人的关注,也较有争议性。下面列举7个比较有代表性的宇宙之谜。

    宇宙之谜1:反物质

    把宇宙中纷繁多样的宏观物质还原到微观,就会发现,它们都是由质子、中子和电子组成的。这些粒子被看作是基本粒子,它们就像是盖房子时最基本的砖块。

    反物质是一种假想的物质形式。在粒子物理学中,反物质是反粒子概念的延伸,通常认为组成物质的粒子都有与之相对应的相反版本。也就是说,对带有负电荷的电子来说,一个带有正电荷的正电子就是它对应的反物质。

    像普通物质由普通粒子构成的那样,反物质是由反粒子组成的。同样,也像粒子与反粒子结合会导致两者消失一样,物质和反物质相结合的结果也是一样,而且它们不仅消失,还会释放出高能光子或伽玛射线。而它们的质量则会遵守爱因斯坦定律转化为能量。

    1928年,英国物理学家狄拉克首次从理论上论证了正电子的存在。1932年,美国物理学家卡尔·安德森在实验中证实了正电子的存在,人们迈出了认识反物质的第一步。1955年,美国物理学家西格雷等人,利用实验人工获得了反质子。之后又发现了负质子和自旋方向相反的反中子。反质子和反中子的发现让人们开始明确地意识到,任何基本粒子在自然界中都有相应的反粒子存在。

    这一系列的科学成果让人们逐渐接触到反物质的世界,但认识水平还只停留在表面。这有两方面的制约因素。首先,科学家在地球上很难发现反物质。我们前面曾说过,粒子与反粒子结合在一起就会像冰遇到火一样,两者都消失得无影无踪,或者转变为另外的粒子,因此在地球上,反物质很容易就会消失或转化。其次,制造反物质不但耗资巨大,需要尖端的高科技仪器,而即使制造出了反物质,其保存也是相当困难,因为地球上的万事万物都是由物质组成的。

    从本质上说,反物质是物质的一种倒转表现形式。爱因斯坦根据相对论,对反物质作出的预言是,相对于一个质量为m、电荷为e的物质,一定会存在一个质量为m、电荷为一e的物质,也就是反物质。

    那么,宇宙中到底存不存在反物质呢?

    从哲学角度来回答这个问题很容易,我国古代的太极图似乎就暗示了反物质的存在,一些天文学家也认为反物质是有存在可能的,但至今却无法拿出令人信服的证据来证明它的存在。

    否定反物质存在的人很多,美国宇宙学家施拉姆曾说,大多数理论家的直觉显示是不存在反物质的,这说明如果你找到了反物质,那将是一个伟大的发现,并证实了肯定反物质的有关理论是错误的,但极有可能是你不能找到它。

    即使这样,目前为止,已经有多个国家的科学家参与反物质的研究,投入的资金更是高达1000多亿美元。丁肇中指出,如果反物质真的存在,那么,正、反物质碰撞时,将会产生巨大的能量。

    人类的肉眼和天文仪器所能看到和观测到的宇宙中的物质,仅是以恒星或星系形式存在的宇宙结构,只占整个宇宙的10%。宇宙的任何天体都有巨大的引力,在巨大引力的作用下,天体会出现各种反应,并发光发热。当引力随质量增大时,天体会逐渐演变成为一无所有的区域,而且也不发光也不发热,就是我们所称的“黑洞”。对此,法国数学家、天文学家拉普拉斯曾经大胆预言,宇宙中最大的天体有可能是看不见的。

    既然宇宙中看见的物质仅占10%,那么,看不见的物质就占90%,它们以暗物质或其他结构形式存在。

    对可见物质的巨大引力的存在证明暗物质和反物质存在,似乎这样推测是正确的,但我们的红外线、紫外线和x光都无法探测到暗物质和反物质。

    早在1 8 9 8年,一位英国物理学家就曾提出,与物质存在一样,像镜像那样相对应的反物质也是存在。但碍于当时的科学水平和试验条件,这个反物质的概念没有任何事实依据,那么与存在于宇宙体系相反的,由反物质组成的“镜像”宇宙也就成了仅是纯粹意义上的假说。

    1997年,美国天文学家宣布,他们利用伽玛射线探测卫星发现,在银河系上方约3500光年处有一个处在不断喷射状态的反物质源,它喷射出的反物质高达2940光年,就像是一个巨大的喷泉,这被称为“反物质喷泉”。这一发现极大地震惊了整个物理学界,一下子激发了科学家们沉寂下来的寻找反物质的热情。

    1998年6月3日,丁肇中教授发起了具有全球意义的寻找宇宙反物质活动,这一度让反物质领域成为全球天文学界最为关心的焦点之一。

    粒子实验已经证实,正、反粒子的强作用和电磁作用性质是完全一样的,那么,与质子和中子一样,反质子和反中子能结合成带负电的反原子核,反原子核和反电子结合能组成反原子。

    这么说来,我们的物质世界中有多少原子,反物质世界中也就相应地存在着多少种反原子,而且原子核反原子在结构上几乎是没有区别的。再从深一层次上讲,大量反原子也一定能构成反物质的恒星和星系。假设宇宙中正、反物质是等量的,那么这样的反恒星和反星系应该也是存在的。

    那么,这就给天文学家提了几个深刻的问题:与现存的星系结构体系相对应的反宇宙结构体系是不是存在呢?

    如果存在,它们的位置又是如何呢?

    上文中说,红外线、紫外线和x光都无法探测到宇宙中的暗物质和反物质,所以通过观测来分辨遥远的星系有没有由反物质构成的,是一件极为困难的事情。至今,天文观测能接受的只是远处天体所放出的光子。在理论上,如果正物质天体辐射光子,那么反物质天体应该也能辐射反光子。而光子是一种纯中性的粒子,所以光子与反光子其实是同一种物质,也就是说天文学家通过可见光、射电、x射线或Y射线观测的光子,无法确定它是来自于物质构成的天体,还是反物质构成的。

    恒星和星系除辐射光子外,还辐射中微子。中微子与光子不同,它和反中微子有很大的不同,这似乎让我们看到了一点希望。因为如果我们能接收中微子,那么就能将物质天体和反物质天体区分开来了。但可惜的是,中微子与任何物质的作用都是很困难的,制造一个接收中微子的科学仪器也是很困难的。所以,利用中微子区分物质天体和反物质天体也是行不通的。

    虽然探测不到反物质天体,但我们的理论证实它极有可能存在。我们假设它就是存在的,那它又存在于何处呢?

    我先从离我们较近空间中的天体开始分析。月球是离我们最近的天体,我们的宇航员早就登陆上去过,如果月球由反物质组成的,那么宇航员在登上月球的那一刻或者接近月球的时候,就与月球的一部分相互湮灭了。说明月球不是反物质天体。

    再说太阳。虽然人类不可能通过登上太阳来证明它是不是反物质的,但有其他简洁的方法可以证明。太阳表面的气体很热,导致表面的原子速度极快,形成了太阳风。

    太阳风能吹到其他的行星上,如果太阳是反物质恒星,那么太阳风就是由反原子组成的,它吹到其他行星上,就会与行星一起湮灭。但是这种现象没有发生,这就证明整个太阳系中没有反物质天体。

    也就说,反物质天体至少存在于太阳系之外。

    那整个银河系中的千亿个恒星中,会有一些是反恒星吗?目前,我们能作出肯定的回答:不会。我们分析地面上能接收到的太空中飞行的宇宙射线得知,宇宙射线粒子中反质子比例仅是万分之几,且其中还有少量是高能粒子碰撞的次级产物。此外,从宇宙射线中极少存在的Q粒子中,没有发现任何一个Q粒子。这说明,最初的宇宙射线属于正物质。如果银河系中存在反物质恒星,那么宇宙射线粒子与之碰撞后,就会使其湮灭。在湮灭过程中会释放出Y光子。而我们没有找到Y光子的任何痕迹,这说明银河系中不存在反恒星。

    我们知道,宇宙是由大量星系组成的,如果其他星系中有反物质的天体,在理论上我们也能用上述的原理来发现。星系并不是真空,其中弥漫着稀薄的气体,若有反物质存在,定会与正物质相结合消失,产生Y光子。

    经过探测,三千万光年的范围内没有y光子,也就是说在这个范围内是不会存在反物质天体的。在更远的范围内,我们不排除有反物质存在,但因距离太远,y光子信号太弱无法探测到是否有反物质存在的可能。

    这就是我们目前的天文水平能给出的对反物质的解释和回答。面对这样的结果,人们出现了两种看法。一种看法认为宇宙中正、反物质是等量的,只是需要在更远的范围内寻找反物质星系存在的证据;另一种看法认为既定的事实证明,宇宙中没有大量的反物质,要从整个宇宙的发展史中寻找没有反物质的原因。但真相究竟如何,还需进一步的探索和研究。

    宇宙之谜2:微型黑洞

    假如关于引力的激进新理论“膜内宇宙”正确,那么,太阳系中就分布着上千个微型黑洞,其大小就相当于一个原子核那么大。这些微型黑洞是宇宙大爆炸时期留下的,它们因与第五维度的关系在不同程度上影响着时空。

    研究黑洞物理学的狂潮中最令人兴奋的就是微型黑洞,这受一个假想的影响。假设在离地球不到1毫米的地方真的存在着一个平行宇宙,那么量子效应出现所需的能量可能会降低。

    微型黑洞是一种“实验室”,人们可以在其中测试一些弦理论的预言。大型强子对撞机可能创造出微型黑洞。物理学家、天文学家为此而感到兴奋。

    微型黑洞虽然离地球很近,但因它只电子般大小,所以它不会吞下整个地球。到达地球的宇宙射线的能量,一般就超过了微型黑洞,所以微型黑洞不会对地球造成不利的影响。

    弦理论被引入了微型黑洞的概念,黑洞是在大量的物质被压缩到它的史瓦西半径(一个物体成为寻常黑洞时最大体积的半径)之内的时候形成的。因物质和能量能相互转换,所以黑洞能通过压缩能力制造出来。人们非常期待大型强子对投机LHc(粒子加速器)能不能在14万亿电子伏特的能量下,让两个质子相撞,进而从产生的碎片中制造出微量黑洞。这样制造的黑洞非常小,重量可能只有一个电子质量的1000倍。

    美国罗格斯大学的物理学教授查尔斯·基顿和杜克大学的数学家阿尔力·皮特斯在近年所做的数学模型表明,宇宙在早期曾形成过一些质量非常小的黑洞。传统的观点认为,这种微型黑洞在宇宙存在到我们所处的时代之前,就逐渐消失了。但最新的研究显示,目前仍存在一些微型黑洞,它们可能还是宇宙中最隐蔽的天体,也可能是暗物质的组成部分。

    经过大量计算,基顿和皮特斯指出,整个宇宙中这种微型黑洞的数量相当庞大,在冥王星轨道以内可能就分布着一些这样的微型黑洞。但因为它们本身不发光,质量又很小,因此探索到它们是非常困难的。这两位科学家还通过计算证明,微型黑洞的位置能通过所谓的“引力透镜”效应来确定。他们还强调,随着美国大区域伽玛射线空间望远镜(简称GLAST)的投入使用,对微型黑洞的搜寻有望出现新的突破。

    希腊和俄罗斯物理学家最近提出的假设,高能宇宙粒子穿过大气的时候,也可能产生一些异常微小、存在时间较短的黑洞。这些黑洞以爆炸结束,它们爆炸后的残留,如下雨般倾斜在地球上。他们认为这能解释宇宙射线探测中发现的一种神秘现象。

    还有一些认为宇宙中存在着更高维度的物理学家指出,高能宇宙射线与地球大气分子能产生黑洞。

    这些黑洞的质量极低,在10微克左右,并且非常不稳定,可能在1 0秒~27秒的一瞬间就发生爆炸成为一簇粒子。

    希腊克里特大学的塞奥佐鲁·托马拉斯同两位俄罗斯合作者共同研究得出,如果上面所说的微型黑洞的产生和消失是真实存在的,那么,30多年来,一些设置在高山上的宇宙射线探测器发现的神秘“半人马”现象就能得到合理的解释。

    出现“半人马”现象是因为探测器反常地捕捉到大量带电的、由夸克组成的粒子,底部捕捉到的粒子要比顶部多很多。科学家用神话中头小身子大的半人马来比喻它。

    在过去的几十年中,高山探测器发现了超过40次“半人马”现象。科学家对此作出了多种假说。托马拉斯等人推算了高能粒子产生的微型黑洞在探测器附近爆炸时产生的信号,发现其与探测器实际记录的信号吻合,所以他们认为微型黑洞的解释比较合理。

    如果托马拉斯等人的理论是正确的,那这就不仅意味着微型黑洞的确是存在的,还为高维宇宙理论提供了依据。

    宇宙之谜3:宇宙微波背景辐射宇宙微波背景辐射,是一种充满整个宇宙、来自宇宙空间背景上的各向同性的微波辐射。微波的不同波段有不同的起源,并具有非宇宙学起源。宇宙微波背景辐射是大爆炸遗留下的产物,被认为是宇宙大爆炸存在的证据。它产生于大爆炸后的三十万年。

    宇宙微波背景辐射的研究最早源自美国科学家阿尔弗和赫尔曼的预言。1948年,他们预言因宇宙的膨胀和冷却,宇宙大爆炸产生的残留辐射现在所具有的温度大约在绝对零度以上5K。绝对零度等于摄氏零下273度。最新的精确测量结果显示,宇宙微波背景辐射的温度是零下270摄氏度。当时,他们的预言没有引起人们的普遍重视。

    1965年,美国新泽西州贝尔实验室的两位无线电工程师阿尔诺·彭齐亚斯和罗伯特·威尔逊,在为跟踪一颗卫星调整一个高灵敏度的无线电天线这个偶然的机会下,发现了宇宙微波背景辐射的宇宙辐射场。其实,在1964年,这两位工程师就在检测无线电天线接收卫星信号功能的时候发现,天线接收过程中存在着无法消除的背景噪音。他们认为,这些背景噪音是来自宇宙的微波噪声,波长为7.35厘米,如果假设它们是热辐射,温度就是3.5K。1965年,他们发现宇宙微波辐射之后,将3.5K更正为3K。之后,他们将这一发现公诸于世,1978年,他们因为这一发现获得了诺贝尔物理学奖金。

    几乎与贝尔实验室的两位无线电工程师同时,附近普林斯顿大学中由罗伯特·迪克领导的一个科学家小组,已经肯定阿尔弗和赫尔曼之前作出的预言,并开始着手设计一台能探测到大爆炸残留辐射的探测器。

    他们听说贝尔实验室的接收机器中存在着无法消除的噪声,就立即将它们解释为源自大爆炸的残余辐射,相当于电磁波谱的微波部分波长为7.35厘米的某种无线电波信号。他们假设辐射是热辐射,那它的能量就相应于2.7K的温度,这与两位工程师的结论非常相近。

    1989年,美国宇航局的探测卫星又探测到0.5毫米~5毫米波段的微波信号。

    这些有意无意探测发现的微波,被称为“宇宙微波背景辐射”。宇宙微波背景辐射的存在,强有力地支持了宇宙大爆炸理论。

    微波背景辐射首先也是最主要的特征是具有黑体辐射谱。能在地面上直接探测到的是0.3厘米~75厘米波段,其余波段的都不能直接探测到。大于100厘米的射电波段无法直接探测,是因为银河系本身的超高频辐射把来自河外空间的辐射掩盖掉了。而小于0.3厘米波段因受地球大气辐射的干扰,凭借气球、火箭或卫星等空间探测手段才能探测到。从0.054厘米到数十厘米波段内进行的测量显示,背景辐射是温度接近于2.7K的黑体辐射。

    黑体辐射谱的特征表明,微波背景辐射是极大的时空范围内的事件。因为只有辐射与物质相互作用,才能形成黑体谱。但我们现在所观测到的黑体谱一定起源于很久之前,因为我们现在宇宙空间的物质密度极低,辐射与物质之间的作用非常之小。微波背景辐射中应该包含比遥远星系和射电源索提供的更古老的信息。

    微波背景辐射另外一个特征是具有极高度的各向同性。这个特征包含着两方面的含义,一方面是在小尺度上有各向同性,微波背景辐射在几十弧分的范围中的辐射强度的起伏小于0.2%~0.3%;另一方面是大尺度上的各向同l生,即使是在天体的各个不同方向上,辐射的涨落相差也不到0.3%。这一特征说明,在各个不同方面和各个相距非常遥远的空间中,是存着相互联系的。

    宇宙微波背景辐射似乎被多数科学家看成是宇宙大爆炸学说的重要论据。大爆炸后物质的射电辐射,随着宇宙的不断膨胀而衰减,温度也逐渐下降。1949年,美籍俄人盖莫夫估计,宇宙物质的射电辐射大约与3K(约零下270℃)温度下的黑体辐射相当。如果是这样,地球上接收的微波就是来自于整个宇宙。

    而事实是,这种微波信号不一定来自整个遥远的宇宙,它还极有可能是太阳等离子云层对太阳微波的反射。

    厘米波段的信号可能是比较重的元素的等离子体反射的;而毫米波段的信号可能是质子、Q粒子反射的。这与地球上空不同的离子层反射不伺波长的短波一样。这算得上是对宇宙微波背景辐射的一个质疑。

    而质疑不只是这一个。近年来,有的天文学家还提出了不同的怀疑。

    中国的欧阳埏先生在《宇宙演化》中指出,近来的测量表明,背景微波辐射在宇宙中有O.1%的变化,狮子座方向的地方温度最高,宝瓶座方向的地方温度最低,温度随角度遵循余弦曲线的规律变化,与黑体辐射谱有差异,且从统计的数据来看,差异是显著的。

    所以,只要通过实验证明了微波背景辐射并不是来自于宇宙深处,而是来自于太阳等离子云层,那么“宇宙微波背景辐射”就应改称为“太阳微波背景反射”,而且这也直接证明了2光年高空存在等离子云层。

    宇宙之谜4:暗物质

    提到宇宙,我们首先想到的几乎都是太阳、月亮、星星等发光发亮、能肉眼观测到或用望远镜观测到的其他星体。而宇宙遵循的并不是“所见即所得”的原则。许多科学家都认为,发光发亮的物质仅是宇宙中很小的一部分,大部分都是暗物质,且它们包围着宇宙中的每个星系,现有的科技手段还无法直接检测到。

    所谓的暗物质,指的是那些由天文观测推断存在于宇宙中不发光的物质。目前人们通过引力产生的效应能推断出宇宙中存在着大量的暗物质。暗物质有可能是由轻量级的中微子组成,也有可能是看不见的黑洞。

    能推断出宇宙中存在暗物质的事实主要有三个:

    第一个:我们的宇宙虽然处在膨胀状态,但高速运动中的星系不会相互散开,仅靠可见物质,它们是无法做到这一点的。太阳系中太阳的质量占整个星系的99.86%,所以离太阳近的行星受到的太阳引力,比离太阳远的行星大,那么,离太阳近的行星绕太阳公转的速度要比离太阳远的行星快,因为只有这样才能产生更大的离心加速度来平衡较大的太阳引力。但在星系中心,离星系中心近的恒星的运动速度,并不比离得远的恒星的运动速度快。这就说明星系的质量并不是几种在星系的中心,在星系周围一定存在着大量的我们看不见的暗物质。

    第二个:因天体的亮度能反映处于天体的质量,所以天文学家常常用星系的亮度来估算星系的质量。而通过引力也能估算出星系的质量,但这样估算出的银河系的质量,比根据亮度估算的银河系质量高十倍以上,在外围区域甚至能高达五千倍。从这个方面也能推断出,宇宙中必然存在着大量暗物质。

    第三个:20世纪70年代,天文学家测量旋涡星系中不同恒星的速度后,画出了表现它们到星系中心距离之间关系的“旋转曲线”。原本认为,恒星的速度在增大到一个峰值后,会逐渐随着远离星系而逐渐减小,但测量的结果却不是这样的。实际测量显示,恒星的速度确实会先增大到一个峰值,但随着逐渐远离星系,它们的速度是保持基本、不变的,也就是平坦的旋转曲线。如果是这样,在星系的边缘恒星应该就被甩出了星系,但它们是安稳存在的,也就是说一定有科学家们没有探测到的暗物质维系住了它们。

    宇宙中有暗物质存在的最早证据来源于对球状星系旋转速度的观测。现代天文学家通过引力透镜、宇宙中大尺度结构形成、微波背景辐射等各个方面的研究,指出我们目前所知道的宇宙只占真实宇宙的4%,暗物质则占23%,剩下的73%是导致宇宙加速膨胀的暗能量。

    1933年,瑞士天体物理学家弗里茨·兹维基在研究后发星系团(位于后发座天区、距离我们较近的一个规则星系团)的时候,发现星系间的引力很小,是无法维持住整个星系团的,所以,他首先提出了宇宙中存在暗物质。“暗物质”这一概念刚刚提出的时候,它仅是理论的产物,但到了现在,它已经成为宇宙的重要组成部分。

    暗物质和暗能量被科学家们看作是宇宙研究中最有挑战性的课题。因为目前的科技水平还无法直接观测到暗物质。但我们却能明显地感受到暗物质的存在,它能干扰星体发出的光波或引力。对于暗物质,科学家们曾提出了许多假设,但直到现在那些假设也没有充足的证据证明。

    一个质量非常大的天体,如星系团的周围会出现许多“弧线”,它们是背景星系所发出的光被前方的星系团引力扭曲、放大后所产生的像。通过对这些弧线的大小和形状的研究,天文学家能计算出星系团的质量。而将星系团的质量与星系团中发光星系的总质量相比,就能计算出星系团中存在多少暗物质。

    由计算得知,暗物质的总质量是普通物质的6.3倍,它包含的能量占宇宙能量的l/4。更重要的是,暗物质是宇宙结构的主导。暗物质的本质是什么,现在还无人能知,但如果假设它是一种相互作用很弱的亚原子粒子的话,那由此形成的宇宙大尺度结构与观测是一致的。但近来通过对星系以及亚星系结构的分析可知,这一假设与观测结果之间存在着一定的差异。这就为同时出现多种可能的暗物质理论提供了条件。通过研究小尺度结构密度、分布、演化以及其环境,能区分这些潜在的暗物质模型,这为暗物质的研究带来了新的曙光。

    那么,暗物质在宇宙中是怎样分布的呢?

    首次绘制出的暗物质分布图是令人信服的,它是证明暗物质是恒星和星系赖以支撑的框架的证据。

    从分布图上,我们可以看到,暗物质不是处处分布,只在某些地方聚集成团状。将星系的图片与暗物质的分布图重叠后,我们发现,星系与暗物质的位置是基本吻合的,有暗物质的地方就有恒星和星系,没有暗物质的地方,就什么也没有。在整个宇宙中,暗物质好似是恒星和星系的一个隐形的而又不可缺少的背景。

    虽然有关暗物质的许多方面,科学家都给出了结论,有的还绘制出了图谱,增加说服力,但在暗物质上,我们还需要更多的证据。

    其中一个证据来自于星系团之间的碰撞。子弹星系团是两个星系团碰撞的产物。当两个星系团发生碰撞时,它们中的绝大多数星系会不受影响地彼此穿过,因为星系团中各个恒星之间有足够的空间。

    星系团中的高温气体占重子(三个夸克组成的基本粒子,三个反夸克组成的是反重子)物质总量的绝大部分,而普通物质之间是通过电磁力而发生作用的。所以,当星系碰撞时,就会以辐射的形式损失能量,这造成了高温气体减速。

    天文学家使用引力透镜探测子弹星系团时,间接地探测到不可见物质的分布,并发现在星系碰撞期间,它们也能不受影响地彼此穿过。这个证据超越了推测,是更加真实的证据。

    比上面的更进一步,一个天文学家小组用哈勃太空望远镜探测到了位于遥远星系团中的暗物质,它们呈环状分布。通过哈勃太空望远镜拍摄的照片,我们能看到宇宙中一个跨度约为260万光年的暗物质环。天文学家们称,这是迄今为止能证明暗物质存在的最强有力的证据。

    随着天文科技水平的提高,探测暗物质的方法不断出现,能证明暗物质的真实证据越来越多。但我们所说和所做的证据只是证明了暗物质的存在,以及它的分布情况,并不是在了解神秘暗物质的性质问题,所以,暗物质仍然是宇宙空间中的一个谜,仍有待于科学家们进行进一步的研究和探索。

    宇宙之谜5:中微子

    在宇宙中,有一种粒子,像幽灵一样,既不会被其他物质吸收或反射,也几乎不与任何物质发生作用,能畅通地穿过任何东西。这个“幽灵”就是中微子,也叫做微中子,是轻子的一种,在燃烧的火焰中生成,如在即将死亡的星球向超新星转化的爆炸过程中生成。

    中微子是组成自然界最基本的粒子之一,常用符号“v”表示。它不带电,自旋为1/2,质量非常之轻,是电子的百万分之一,以接近光速的速度运动。

    在谈论中微子之前,我们不得不先提及它的“老大哥”中子。中子是原子的基本组成之一,在衰变成质子和电子时,出现了能量亏损。中子衰变成质子和电子的过程被称为B衰变。

    B衰变过程中有一个奇怪的现象,那就是物质释放出的由电子组成的B射线的能谱是连续的,电子只带走了它本该带走的能量的一部分,另一部分能量消失了。之所以奇怪,是因为在19世纪末20世纪初科学家们发现,量子世界中能量的吸收和发射是不连续的,原子的光谱、原子核中放出的Q射线和Y射线都是不连续的,这符合量子世界中原子核在不同能级间跃迁时能量守恒的规律。也就是说,B衰变过程中出现了能量失衡。物理学著名的哥本哈根学派鼻祖尼尔斯·玻尔指出,能量守恒定律失效了!

    1931年春,国际核物理会议在罗马召开,世界最顶尖的核物理学家汇聚于此。在会上,美籍奥地利科学家泡利指出,B衰变过程中能量守恒定律仍然正确,之所以出现能量亏损,是因为中子这种大质量的中性粒子在衰变过程中变成了质子、电子和一种质量小的中性粒子,而小质量的中性粒子将能量带走了。泡利预言带走能量的就是中微子。

    1933年,意大利物理学家费米揭开了B射线能谱连续之谜。他提出了B衰变的定量理论,指出自然界中除已知的引力和电磁力外,还有第三种相互作用——弱相互作用。中子通过弱相互作用衰变成一个电子、一个质子和一个中微子的过程就是p衰变过程。他的理论定量地描述了B射线能谱连续和B衰变半衰期的规律。

    泡利和费米的理论逐渐被人们接受,但没有任何人见到过中微子,即使是泡利本人也曾说过,中微子是永远无法探测到的。

    1941年,我国物理学家王淦昌写了一篇题为《关于探测中微子的一个建议》的论文。次年,在美国发表,同年6月,美国物理学家艾伦根据王淦昌在论文中提出的方案,以实验的方式证实了中微子的存在。但当时的实验存在一定的缺陷,直到1952年,艾伦与罗德巴克合作才首次成功地完成了实验。

    证实中微子存在以后,下一步的工作就是测量中微子与物质相互作用引起的反应。但因为这种作用极弱,所以实验是非常困难的。直到1956年,这个实验才由美国物理学家弗雷德里克·莱因斯完成。

    这个实验首先需要一个强中微子源,也就是一个核反应堆。因为核燃料吸收中子后会发生裂变,裂变碎片释放出中子,从而使其再次裂变。裂变碎片多是B放射性的,而反应堆中有大量的裂变碎片,所以它既是强大的中子源,也是强大的中微子源。中微子反应率很小,需要大量的靶核,莱因斯选用了氢核作靶核,使用了两个装有氯化镉溶液的容器,并将两个容器夹在三个液体闪烁计数器中。

    每当有射线发出,计数器中的液体就会发出一次荧光。中微子与构成原子核的质子发生碰撞后产生的频闪比较明显和奇特,从而证实中微子的存在。这个实验打破了泡利认为中微子永远观测不到的悲观观点。因为测量中微子实验的成功,莱因斯在1995年与美国物理学家马丁·珀尔共享了诺贝尔物理学奖。

    利用好中微子,它能帮助我们方便地完成一些复杂的事情。中微子能应用到地球上的通讯上,它能直接穿透地球,而且穿过地球时的损耗很小,曾有实验显示,用高能加速器产生十亿电子伏的中微子穿过地球的衰减率只有千分之一。如果将中微子束加以调制,让它包含有用的信息,在地球上任意零点通讯联系,那么我们就能省去昂贵而又复杂的卫星或微波站。

    中微子还能应用到地球断层扫描(地层CT)上。随着中微子能量的提高,中微子与物质相互作用截面会逐渐增加,如果用高能加速器产生能量为一万亿电子伏以上的中微子束定向照射地层,中微子就会与地层物质作用,在局部产生小“地震”,这与地震法勘探非常相似。利用中微子可以对深层地层一层一层地扫描和勘探。

    中微子天文学是天体物理学的一个分支,主要研究恒星上可能发生的中微子过程以及这些过程对恒星的结构和演化的作用。

    通过一些天文方面的研究,人类已经认识到中微子的一些性质、运动及变化规律。但有关中微子,还有许多谜团没有解开,如存不存在重中微子?中微子的质量如何?

    太阳中微子有没有失踪?太阳中微子的强度有没有周期性变化……这样的一些问题是把微观世界与宇观世界联系起来的重要环节。研究和探测中微子不仅对高能物理和天体物理有重要意义,对日常生活也有很重要的现实意义。

    宇宙之谜6:类星体“类星体”是什么物质?仅从它的字面意思理解就对了。所谓类星体,就是类似恒星天体的简称,有称为星体、魁霎或类星射电源。它与脉冲星、微波背景辐射和星际有机分子并称为20世纪60年代天文学“四大发现”。

    以下图片是拍摄到的可见宇宙边缘的类星体。个类似于烟火的景象,让科学家们进一步了解了宇宙初期的混乱,也一直让科学家们感到困惑不解。

    类星体离地球至少100亿光年,是至今人类所能观测到的最遥远的天体。它是一种高光度和强射电的天体,比星系要小很多,却能释放出星系千倍以上的能量,它发出的光比太阳还要明亮万亿倍。两者相比,太阳就好似是子夜天空中一颗三等星,而类星体就是正午的太阳。正是因为光的超大强度,才让人类在100亿光年以外的距离观测到了它。

    之所以称为“类星体”,是因为天文学家在发现它时,觉得它很奇怪。从照片上看,像是恒星,但不能肯定是恒星;从光谱上看,类似于行星状星云,却又不是星云;从发出的射电(即无线电波)上看,像是星系但又不是星系。如此一来,在不明它真实身份的情况下取名“类星体”。

    类星体的发现要追溯至1960年,当时美国天文学家桑德奇利用光学望远镜发现了剑桥射电源第三星表上第48号天体(3C48)光学对应体。他发现3C48光谱的一个奇怪位置上存在着一些又宽又亮的发射线。

    1963年,美国天文学家马丁·施密特在3C273的光谱中发现了与3C48相似的现象。他研究发现那些发射线是人们早已熟知的氢的发射线,只是它们向着红光的方向移动了相当长的一段距离。这说明它们有很大的红移。1964年,天文学家邱宏业将这样的天体简称为“类星体”,从此,类星体载入人类天文观测史。

    类星体的命名统一在前面冠以类星体的英文缩写QSO,后面再加上类星体在天球上的位置坐标。如类星体3C48位于赤经13度35分,赤纬+33度,所以就将其命名为QS001335+33。

    类星体的红移值用z表示,类星体3 c 2 7 3(QSol227+02)的Z=O.158,这已经远远超过一般恒星的红移值。而有不少类星体的红移值超过了1,有的甚至高达4以上。

    在对类星体的研究和观测中,科学家发现了另外一种类天体,它们的形态与恒星相似,也有很大的红移,但却没有射电辐射,被称作“射电宁静类星体”。

    近来,有越来越多的证据显示,类星体是一类活动星系核(AGN)。我们普遍认可的活动星系核模型认为,在星系的核心位置有一个超大质量的黑洞,在强大的引力作用下,它周围的尘埃、气体以及一部分恒星物质,形成了一个高速旋转的巨大吸积盘。在这个吸积盘内侧靠近黑洞的地方,物质被吸入黑洞,随着巨大的能量辐射,物质喷流形成。但物质喷流又受强大磁场的约束,所以只能沿着磁轴的方向(通常是与吸积盘平面相垂直的方向)高速喷出。如果这些喷流正好对着观测的科学家,科学家们观测到的就是类星体。

    类星体中充满了疑问和奇特的现象,如红移之谜,超光速的移动,巨大的能量来源等,到目前为止,仍然没有得到确切的解释。这些疑问如果得到解决,我们对宇宙的认识就可能会向前迈进一大步。

    宇宙之谜7:引力波“脚踏实地”的前提就是地球要有引力。如果没有引力,我们就像是生活在月球上,一直飘浮在空中。引力我们都知道,那引力波是什么呢?

    物体做加速运动的时候,会对原有的引力场产生干扰,辐射出引力波,这就像是把一块石头扔到平静的水面,水面上会出现水纹一样。引力波是爱因斯坦从广义相对论中提出来的。

    引力波是如何形成的?广义相对论认为,物质的质量能让时空弯曲,时空弯曲的量度就是引力。如果将宇宙时空看成是一块橡胶板,质量不同的天体因引力的不同,会在橡胶板上压出深浅不一的坑,形成引力阱。天体在自己的引力阱中滚动,形成天体运动。天体的运动,也可以说是滚动,能引起橡胶板的轻微波动。当超新星爆发和黑洞碰撞时,质量在瞬间发生变化,这就相当于是质量在橡胶板上大力弹跳,引起橡胶板剧烈地上下波动,这种波动就是引力辐射,即引力波。

    引力波是自然界中最微弱、最不易察觉的波,它在宇宙中无处不在,任何物体无时无刻都在辐射引力波。地球绕着太阳公转就一定会发出引力波,这样就会让地球丧失能量,所以地球会渐渐地沿着螺旋线向太阳靠拢。但因为丧失的能量微乎其微,所以地球向太阳靠近的速度很慢,我们也没有察觉到。

    人们察觉不到引力波,就试图用实验去证明它的存在。在理论上,弹簧振子能产生引力波。所谓弹簧振子,是指一根弹簧两端各连接一个一定质量的物体的装置。弹簧振子如果振动起来就是产生引力,绕在装置中心的垂直轴旋转的重棒会产生引力波。用这种方式获得的引力波的能量极微。另外,以目前的科技水平,即使实验中产生了引力波,也没有足够精密的仪器检测到那样微弱的引力波。

    引力波的频率约为10hz~32hz,极其微弱,所以从1916年爱因斯坦预见引力波存在至今,人类仍没有成功地直接测试到引力波。在测试方法和原理上有突出贡献的美国科学家韦伯也不例外,他只是误将自外界的“噪音”定义为引力波。所以,我们只能靠探测宇宙中巨大的天然引力波来证明引力波理论。

    目前,科学家已经可以肯定广义相对论的正确性,所以引力波必定存在。长期以来,科学家构思各种探测引力波的实验,虽然已经通过对射电脉冲双星PSRl913+16公转周期变化的研究间接证实了引力波的存在,但直接测量引力波的实验仍没有获得成功。

    了解和认识引力波,既能揭示有关致密星和超密物质的未知性质,也能告诉我们宇宙诞生的某些情况。此外,像光波、声波、电磁波一样,引力波也具有波的一般属性。也就是说,如果人类能成功地测量和利用引力波,利用它传输信息的能力,将彻底改变我们现在所处的信息时代。

    事实上,让我们最感兴趣的引力波源是宇宙开端的大爆炸。宇宙诞生的最初瞬间,充满稠密的物质;这导致因粒子间的碰撞而产生的引力波在瞬间被另一些粒子吸收了。而在宇宙迅速扩张的膨胀阶段,宇宙的密度迅速下降,释放出的引力波不再被吸收。从那时开始,最原始的引力波就在空间中蔓延开了。

    目前,微波背景辐射是人类能捕捉的有关宇宙大爆炸的最古老痕迹。但如果我们能捕捉到引力波,并对它们加以分析,那我们就极可能获得大爆炸后极短时间的原初宇宙的宝贵信息,比微波背景辐射给我们带来的更为久远,因为大爆炸后的50万年中没有电磁波射出来,但引力辐射却能不受阻碍地穿过原始宇宙的最高密度区域。这么说来,或许只有引力波能给我们提供存在黑洞和宇宙诞生的确凿证据。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架