青少年科技常识必读-能源高新技术
首页 上一章 目录 下一章 书架
    充满希望的绿色能源

    生物能指的是生物质能源。树木、农作物、陆地和水中的野生动植物体及某些有机废料,都属于生物质。所谓生物质能就是通过绿色植物的光合作用将太阳辐射的能量以一种生物质形式固定下来的能源。

    生物包括植物、动物和微生物。动物和大多数微生物都靠植物为生,除了少数微生物外,地球上只有绿色植物才是真正的“建设者”。绿色植物以二氧化碳和水这类简单的无机物质做原料,合成各种复杂的有机物,不仅满足自身的需要,同时也为其他生物所享用。这个过程必须在有光照的条件下才能进行,叫作光合作用。绿色植物光合作用的过程,是它们成长壮大的过程,也是它们吸收、储存太阳能的过程。这就是说,生物质能源同煤、石油、天然气等化石能源一样,都是源于太阳能,是太阳能的一种形式。不同的是,化石燃料里的能源是亿万年前的生物质储存起来的太阳能,而生物质能源则是当代植物通过光合作用固定起来的太阳能。这些以葡萄糖、淀粉等物质形式存在于植物内部的能量,经过生物技术的加工,就能够转变成甲醇、乙醇、甲烷、氢气等燃料。因不含硫和其他杂质,燃烧时不产生SO2、CO2等有害气体,所以这些生物燃料有“绿色能源”之称。

    解决能源短缺的聚变能

    使用美国最新建成的试验核反应堆的科学家们认为,他们为下个世纪开发一种安全而又取之不尽的能源——聚变能——而进行的努力取得了进展。建在美国中部新泽西州郊区普林斯顿大学等离子体物理实验室的“国家球形核聚变实验装置(NSTX)”,使支持提供聚变研究经费的官员们和参与此项全国性合作项目的物理学家和工程师们惊叹不已。能源部长比尔·理查森说:“NSTX是有关这项技术具有潜力的最佳例证,它缩短了我们与实际应用聚变能之间的距离。”聚变过程由太阳提供动力,它在高温高压条件下把特殊形态的微小氢原子聚集在等离子体内——等离子体是一团滚热的带电气体,与荧光灯泡中的物质相似。

    支持者说,有朝一日,利用原子聚变释放的能量提供清洁能源将远比今天的商业核裂变反应堆安全。聚变所需的燃料——从水中提取的氢原子——十分丰富。此外,聚变过程既不会引起“熔化”反应,也不会造成空气污染、酸雨或温室效应。

    实验室负责人罗伯特·戈德斯通说,聚变反应堆产生的放射性只有与之相当的裂变反应堆的千分之一。矿物燃料供应预计50年后就将发生短缺,许多科学家希望聚变能在此之前成为主要能源。

    但是,充分改进控制核燃料自动维持“燃烧”的技术将需要几十年的时间和数亿美元的资金。同时,全国各地的物理学家说,由于联邦政府的经费投入不足——NSTX项目每年只有2700万美元的经费,而美国整个聚变研究计划每年也只有2.27亿美元的经费——所以近年来进展的速度放慢了。圣迭戈加利福尼亚大学物理学教授帕特里克·戴蒙德说,“磁约束聚变研究非常有价值,因为它解决了一个能源问题”,但政府并没有把它放在最优先考虑的地位。戴蒙德的研究重点是反应堆等离子体湍流。

    控制这种能快速冷却温度达数百万度的等离子体以使其停止聚变反应的湍流,是物理学家所面临的最大挑战之一,也是NSTX研究小组关注的焦点。

    可替代煤的生物质压块燃料

    近年来,欧美一些国家研制了多种生物质压块燃料,有的是全用生物质挤压成型,有的还掺进低热值化石燃料,如泥炭、褐煤等,以增加密度,提高热效。由于一般生物质原料比较松散,直接燃烧效率低,储运也不方便。有一种添加化石燃料的生物质压块,经过适当的物理化学处理,热压成型,热值可达30000千焦/公斤,燃烧时灰渣也少,烟尘不多,可以用于火电厂代替煤炭,经济效益明显。据国外报道,这样处理生物质过程,在轻度碳化时,还能副产煤气,除补偿生产过程的能耗外,原料本身的热损失约为15%左右,但提高了燃料的档次,总体上是合算的。

    纯生物质压块,主要是通过挤压生成的。因为植物细胞中含有大量的本质素,它的结构为苯丙烷型的产体结构,这是一种高分子化合物,在一定的压力的温度下能软化,可把相邻的纤维素等粘结在一起,冷却后就成块状固体燃料。这种纯生物质压块燃料密度大,使挥发物的逸出受到限制,燃烧时间可以较长,氧化过程比较平稳,即俗话说的禁(jìn)烧,特别适合于作家庭炉灶的燃料,也可供采暖和发电用。

    制造生物质压块燃料的关键设备是压制成型机,目前主要有螺旋挤压式、活塞冲压式和环模滚压式等几种类型,国内外较常用的螺旋挤压机,这种挤压机耗电多,每千瓦小时的电约能生产10公斤压块燃料。另外,螺杆的材质非常关键,现有国产螺杆的使用寿命均较短,约100小时左右。因此,严重地影响了国内生物质压块燃料的发展。若依靠进口设备,则会加大生产成本。国际上使用压块燃料最多的是美国、德国、意大利和比利时。国内正在试验的有湖南、四川和辽宁等地。

    分散的生物质收集和储运都比较困难,所以多半只能就地利用,能源利用效率低,浪费大。近年来,国外已开始发展能源农场,专门从事生物质的培育、种植、采集和加工,把生物质能作为一种商品能源来经营。有的还直接与用户挂勾,例如供给发电厂燃料或自建生物质能发电厂,以供电为最终目的。

    氢能的开发利用

    氢是一种可燃烧的理想新能源,是世界上仅次于氧的最丰富的元素。它以化合物的形式储于水与化石燃料等物质中,可以通过热解、电解、热化学、光解等方法制取氢。每公斤液氢燃烧的发热值为14.2万焦耳,相当于汽油发热值的24倍,并和空气中的氧化合产生蒸汽,凝结成水及少量氧化氮,不会污染环境,是可以再生和再循环的洁净能源。

    氢储存方法有高压气态储存、低温液氢储存、化学储存及金属氢化物储存四种,其中金属氢化物储存系统最有发展前景。

    目前,国外对氢能的科技开发研究十分重视,美国、俄国、德国、日本及沙特阿拉伯等国都积极开展氢能研究。随着制氢和储氢技术的成熟,经济可行氢能将应用于航空、航天、火箭、机车、汽车、冶炼、化工、发电等领域。

    欧洲将利用核能发展氢能技术:加拿大利用丰富水资源电解水制氢;美国已开始利用太阳能制氢,预计到2020年可规划建成供30万辆燃料电池汽车,使用城市供氢系统。同时在利用核能发展氢能研究上也有新的突破。

    日本把氢能利用和国际洁净能源利用技术列为“新日光计划”的主要发展内容。

    从世界能源发展的趋势看,预计新世纪制氢技术将和清洁煤转化、核能发电、太阳能发电、风能、水能发电及燃料电池发电形成系统。随着新世纪的来临,氢能的开发与应用可望得到飞速的发展,最终代替燃油在航空和汽车上得到应用。

    原子核能的利用技术

    原子核能就是某些原子核在外界条件作用下,发生裂变、衰变及聚变作用,并同时释放出巨大的能量。原子核能,主要有裂变能和聚变能。利用这巨大的能量来进行发电的装置,就称为核电站。据统计,1公斤铀-235裂变时放出的能量相当于4500吨原煤燃烧时放出的热量,从综合经济效果看,它既安全又较干净。虽然一次性投资大,但长期看经济上是合算的,所以它的推广普及比较快。核电对弥补能源短缺、协调能源分布不均、缓解交通运输紧张、促进经济发展起着越来越大的作用。

    正在研究的是核聚变能。核聚变能是由较轻的原子核(如氘、氚等核)在中子作用下,聚合成较重的氦核时所释放出来的能量,1公斤氘核聚变时放出的能量比相同重量的铀核裂变时放出的能量大4倍之多。但要有控制地利用核聚变能,在技术上难度是比较大的,因为要使两个相同的核电荷聚合,必须克服它们问的静电排斥力,也就是要达到“热核点火”的条件很苛刻。目前人们利用激光和强磁场约束对此研究有了一定进展。几十年来,受控核聚变发电一直是人类探索新能源的尖端课题,因为氘、氚核燃料在海水中储藏量达24.3万亿吨,足够人们用上几百亿年,这项技术一旦成功,势必会带来能源史上一场伟大革命。

    造福人类的太阳能利用技术

    太阳能是一种取之不尽用之不竭的天然能源。目前世界各国都不同程度制定了“阳光规划”,主要从太阳的热能和太阳光能两方面研究。太阳热能利用已比较普遍,如太阳灶、太阳能热水器、太阳能干燥器等,当然也有国家在研究太阳能锅炉。太阳光发电技术研究进展较快,其原理是利用光电效应将太阳光直接转换成电能,关键技术是提高材料的光电转换效率,经过研究试制发现,各种半导体材料如单晶硅、多晶硅、砷化镓、硫化镉等材料都可制作光电池管。日本利用非晶硅薄膜作光电池管,不但成本降低,转换率也能达到15%左右。随着转换率的提高,其应用范围已从人造卫星等航行器,逐步扩大到作为地面特殊场合的辅助能源,如我国拉不上电网的边远地区,农牧民用电就可采用这项技术。若将来能利用超导材料制成大容量太阳能蓄电装置,就可长时间、无损耗地大量贮存太阳能,从而使太阳能利用得到更快的发展。

    人们还在设想发射人造太阳能卫星。把太阳能电池盘送进地球同步轨道,不分四季和昼夜,把太阳光转换成电能,然后经过换能器把电能转换成微波能,从太空中源源不断地向地球表面输送,地球上的接收天线将接收到的微波能再转换成电能,输送到电网。这项技术如能有根本性突破,那将从根本上改变人类利用能源的紧张状况。

    能捕获太阳能的“生物”电池

    美国亚利桑那州立大学汤姆·穆尔领导的一个研究小组正在名副其实地摹仿大自然:利用“生物”电池而不是电化学电池捕获太阳能。这项计划中利用一种叫做“脂质体”的类似电池的人造结构作为阳光的捕获装置。

    “脂质体”实际上是摹仿叶绿体的人造结构,自然界中的光合作用正是通过叶绿体完成的。“脂质体”与实际电池具有同样大的体积,这种系统的核心是分子的三位一体结构:3个分子由化学键连接在一起,其中一个是擅长吸收太阳光子的卟啉分子,卟啉分子一旦受到光的激发,就能把电子传送给三位一体结构中的第二个分子醌分子,醌分子再把电子传给可以在磷脂膜内自由“往返穿梭”的第三个分子。穆尔的研究小组1998年证明,“脂质体”能够产生蛋白质动力,之后,他们又增加了一个关键部位,这个部件能够使“脂质体”利用蛋白质动力推动化学反应,并利用阳光实施化学合成。穆尔的下一个目标是生产NADPH(辅酶烟酰胺腺嘌呤二核苷酸磷酸),NADPH是一个重要的能量储存库,这将是向研制第一片人造树叶迈出的一大步,将来人造树叶能为各种各样的化学反应提供以阳光作为动力的能源。

    前景看好的太阳能电池

    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴一电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表为a-)两大类,而前者又分为单结晶形和多结晶形。

    按材料可分为硅薄膜形、化合物半导体薄膜形和有机薄膜形,而化合物半导体薄膜形又分为非结晶形一(a-Si:H,a-Si:H:F,a-SiXCel-X:H等)、ⅢV族(CaAs,InP等)、ⅡⅥ族(CdS系)和磷化锌(Zn3P2)等。

    “人造地热”的利用

    在地热开发利用逐步深入的条件下,以美国为首的科学家提出了开发地下干热岩的构思,也可以说是人造地热的设想。因为地层深部,特别是与火山岩有关的地层,岩石干热,没有含水层,地热无法输出。20世纪70年代初,美国洛斯阿拉莫斯科学实验室开始试验,采用打斜钻井的技术,将钻孔打到3000~4000米的干热岩体上,获得温度250℃以上,并将岩石破碎,由一个钻孔注入冷水,从另一钻孔提取热水,然后通过地面热交换器,即可输出地热加热的水,并用于发电。此项地热开发涉及到一系列高新技术,如深孔斜钻技术,深层热岩破碎技术以及许多耐高温、高强度材料问题等。美国能源部投入了大量科研经费支持继续试验。与此同时,日本、瑞典、英国和德国也开始了此项探索。由于投资大,其他国家尚未列入地热开发议程。但是,干热岩存在的广泛性,将不受现有地热资源分布的局限,无疑,地热开发将具有光明的前景。

    一般地下矿藏,包括各种化石能源资源都是不可再生的。但是地热资源是否可以再生?这是一个有争议的问题。有人用断面流量法评估地热资源时发现,有些地热热储常常不断地接受来自更深层热流运移的影响,由于地热开采而加剧从周围带来的热量。因此说地热是可以再生的,并希望通过回灌能增加地热水。当然,即使地热可以再生,它也不会像太阳能、风能等那样明显地再生,地热水的加热可能时间很长,然而对于漫长的地质时间观来说,它还是较短的。这是一个值得探讨的问题。正如我国着名地质学家李四光教授曾经说过的“地球是一个大热库,地下热能的开发与利用,是件大事情,就像人类发现煤炭、石油可以燃烧一样,这是人类历史上开辟的一个新能源库,也是地质工作的一个新领域”。我们相信,这种新能源和新领域必将在新技术的发展中弄得更加清楚,并更好地为人类服务。

    利用生物工程开发生物质能

    自然界植物的光合作用虽然很普遍,但是光合效率多数不高,植物生长缓慢,尤其是多年生木本植物。有科学家设想,如果把植物的光合效率提高到千分之五以上,则植物吸收二氧化碳的能力和它本身的繁殖能力就会非常惊人。现在国际上正在提倡“绿色能源”,并希望21世纪生物工程大显身手。目前,已有一些可喜的苗头,利用基因工程、细胞工程和微生物工程的技术,开辟了生物质能的新领域。例如,新西兰培育了一种高光效植物,它能在一年之内使一个树芽繁育100万株树苗,三个月内幼树可长高1.5米。美国宾夕法亚州立大学育出一种杂交的杨树,能使千分之六的太阳能转化为碳水化合物。而在美国加利福尼亚大学培育的热带大戟科植物,每公顷可产油约100桶。最近中国科学院石家庄农业现代化研究所利用生物工程技术培育树苗,年产能力达150万株,他们在高度集约化立体培养架上,一次可生产试管苗10000株/平方米,这相当于常规密植育苗的10倍以上。这些高技术成果,给人们带来无限希望,预示着科学的巨大潜力。人类从植物光合作用中寻求突破,终将摆脱化学能源的束缚,争取一个清洁持久的绿色世界,并不是遥不可及的梦想。

    潮汐能的利用

    潮汐是月球和太阳对地球的引力及地球自转所产生的海水涨落现象,是月球绕地球的轨道运行使海水发生有规律性的变化造成的。潮水涨落的大小与月亮的圆缺有明显的关系,所以人们早已注意到这一自然现象。我国把一天两次的潮水涨落分别称为:白天的海水涨落为潮,晚上海水的升降为汐,合在一起就叫潮汐。因此,我国沿海渔民很早懂得利用潮汐航海行船,借助潮汐的能量推动水车做功。

    在水力发电的基础上,近代又将潮汐能用于发电。20世纪50年代末,中国浙江省开始建起小型潮汐电站,1961年在温岭县建成一座40千瓦的沙山潮汐电站。在国外,1966年法国在朗斯河口建设第一台1万千瓦的潮汐发电机组,投入运行后,于1967年完成24万千瓦的朗斯潮汐电站,这是迄今世界最大的潮汐电站,年发电量5.6亿千瓦小时。1980年我国在浙江省建成3200千瓦的江厦潮汐电站。1981年加拿大在芬地湾的安那波利斯潮汐电站安装了一台2万千瓦的潮汐发电机组,已成为世界上单机最大的潮汐发电设备。目前,俄罗斯、英国、印度、韩国等均在规划建设大型潮汐发电站,我国也对浙江、福建的万千瓦级潮汐电站的建设进行了论证。中国东南沿海潮汐能资源丰富,经济比较发达,电力需求也大,开发潮汐能条件具备。

    根据联合国调查资料,世界上适宜建设大型潮汐电站的地点有20多处,其中多数已进行初步规划,预计2020年全世界潮汐发电量将达1000~3000亿千瓦小时。

    1994年10月,国家海洋局会同国家有关部门在福建省福鼎县召开了“海洋能利用技术发展的计划研讨会”,沿海省市和科研单位的代表一致建议国家要重点安排潮汐电站的建设。目前我国在电站设计和设备制造方面已具备一定条件,并多次参加国外潮汐电站筹建的可行性论证,中国目前是世界上建设潮汐电站最多的国家。

    潮汐电站属水力发电,也是靠水轮机带动发电机发电,与普通水电站差不多。但是它的特点是流量大、水头低,海水不像河水,有腐蚀性,且有海生物附着结垢,这是建设潮汐电站的一个不利条件。因此对水工建筑物和水轮机组有些特殊要求,不过潮汐电站一般没有淹没损失和移民问题。

    用农作物开发燃料

    美国前总统克林顿于1999年8月12日签署了一项法令,要求推动一项利用农作物和草木开发汽车燃料、电力及工业产品的运动,其目标是到2010年前使农作物和草木在这方面的利用率增加两倍。

    白宫说,新出现的生物量产业的投入使用可能意味着新增多达200亿美元的农业收入、对进口石油依赖的减少、以及全球变暖风险的减小。

    克林顿在农林部说:“相信我,如果技术开发的速度足够快的话,这一目标是很容易达到的。”

    能源部长比尔·里查森一语双关地说,农作物实际上将成为发电厂。环境保护局局长卡罗尔·布劳纳说,农业产值或许要用桶,而不是用蒲式耳来计量。

    目前,生物量能源在美国总的能源使用量中占3%,其用途主要是在木材业以及用于从玉米中提取乙醇作为洁净燃料的添加剂。

    白宫说,如果生物量能源的使用增加两倍的目标能够实现。这将相当于每年增加3.48亿桶石油,即158艘超级油轮的容量。温室气体的排放量将因此减少1亿吨,相当于7000万辆汽车的排放量。

    克林顿在总统令中要求成立一个研究理事会,其成员包括农业部、能源部、环境保护局、全国科学基金会及其他机构的主要负责人。

    该委员会每年将就生物量开发项目提出研究计划。这些开发项目的目的是利用农作物、树木以及农业和林业废料生产乙醇之类的燃料或其他产品。该委员会还将努力确保相应的联邦法规对利用生物量制取的产品和能源予以支持。

    从废天然气中提炼清洁能源

    从目前因运输费用过高而白白烧掉的废天然气中提炼出来的一种新型合成燃料,可能是研制新一代废气排放率低、燃烧效率高的发动机的关键。

    克莱斯勒公司与位于俄克拉何马州塔尔萨的一家合成油料公司前不久开始了一项联合研究项目,以开发一种把所谓的废天然气转化为无硫燃料的工艺。使用低硫燃料不仅是降低发动机废气排放量的关键因素,而且对旨在大幅度提高燃料燃烧效率的几项发动机改进技术来说也是至关重要的。

    福特公司和通用汽车公司去年分别宣布与数家大炼油厂开展合作计划,开发低硫燃料,并从石油中提炼其它替代燃料,克莱斯勒公司也加大了在这项研究项目上的投入。

    该项目不仅计划研制无硫燃料,而且还希望通过改进废天然气,开发一种价格低廉的燃料,它可望占美国燃烧总消耗量的7%。其最终面向用户的售价比人们预计的还要低,约为每加仑1.5美元。

    他们将利用合成油料公司的方法,把天然气和空气混合后,借助催化反应生成氢和一氧化碳,然后进一步制成一种碳氢液体。

    所得到的这种燃料中不含有任何烟灰成分,也不含硫,从其特性来看,可以作为新一代高效柴油发动机的理想燃料。据合成油料公司和克莱斯勒公司称,合成燃料的生产设备及使用该燃料的发动机可能将在5年后面市。

    利用余热的热泵技术

    水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等的热量,热泵被用来将低温物体中的热能传送高温物体中,然后由高温物体来加热水或采暖,使热量得到充分利用。

    热泵的工作原理和家用空调、电冰箱等的工作原理基本相同,通过流动媒体在蒸发器,压缩机、冷凝器和膨胀阀等物品中的气液相变化的循环来将低温物体的热量传递到高温物体中去。

    具体工作过程如下:①过热液体媒体在蒸发器内吸收低温物体的热量,蒸发成气体媒体。②蒸发器出来的气体媒体通过压缩机的压缩,变为高温高压的气体媒体。③高温高压的气体媒体在冷凝器中将热能释放给高温物体、同时自身变为高压液体媒体。④高压液体媒体在膨胀阀中减压,再变为过热液体媒体,进入蒸发器,循环最初的过程。

    热泵的性能一般用成绩系数来评价。成绩系数的定义为由低温物体传送到高温物体的热量与所需的动力之比。通常热泵的成绩系数为3~4左右,也就是说,热泵能够将自身所需能量的3~4倍的热能从低温物体送到高温物体。现在欧美日都在竞相开发新型的热泵。据报导新型的热泵的成绩系数可达6~8。如果这一数值能够得到普及的话,这意味着能源将得到更有效的利用。热泵的经济效益,普及率也将得到惊人的提高。目前热泵的最高出气温度为110摄氏度左右。超过这个温度将有可能出现使媒体分解的危险。

    由于氟利昂对地球大气臭氧层有破坏作用,为了保护地球的生态环境,除了提高热泵的成绩系数、有效利用能源以外,各国科学家还致力于新型冷冻媒体的开发。目前已有数种替代氟利昂的媒体得到应用。

    奇特的流动床燃烧器

    在耐火性颗粒体(如砂粒)和固体燃料的混合粒子层的下面,吹入高速空气,形成类似沸腾状态的流动层,这种燃烧器称为流动床燃烧器。流动床是由开有很多小孔的分散板和堆有十几厘米高的砂粒所组成。当空气流速很低时,空气通过砂粒间的空隙而上升。但当流速超过流动开始流速(大约0.2米/秒)时,空气就形成气泡,反复聚合上升,从而引起砂粒剧烈跳动。空气气泡体积膨胀和破灭,砂层被剧烈搅动。砂层的很大的热容量和剧烈搅动,使得流动层温度几乎一样,从而使得燃烧过程不变。即使在700~900摄氏度这样较低的温度下也能稳定地燃烧。在流动层内不需要火焰传播,只要发热量能维持层内温度就行了,因此就煤而言,700摄氏度也就足够了。相反地,如果超过950摄氏度,煤中的灰分将熔化,引起流动层流动化不良。

    由于在流动床燃烧器中燃料不需要粉碎就可燃烧,因而省去了粉碎动力。如果在流动层中添入石灰石,石灰石热分解成生石灰,而生石灰与二氧化硫反应生成石膏,从而实现炉内脱硫。而脱硫反应适合温度在800~950摄氏度,恰好与流动床燃烧器最佳燃烧温度相一致。由于流动床燃烧器的流动层的热容量非常大,像含水量比较大的可以在流动层内干燥燃烧,所以流动床燃烧器又非常适合用于处理城市垃圾和下水道污泥。

    大有可为的宇宙太阳能发电系统

    21世纪的能源系统中,有两大系统是大有希望的,可望作为取代化学燃料的能源之一,它有助于解决酸雨等影响地球环境的问题。

    一种是核聚变能源系统(原子能发电),另一种是软能源系统。在软能源系统中,宇宙太阳能发电系统更加引人注目。

    宇宙太阳能发电系统以取之不尽用之不竭的太阳能为能源,可以不受白天黑夜以及气候变化影响。这一设想源于美国二十世纪60年代微波传输电力的试验,迄今的研究开发过程已经历过5个阶段:

    第一个阶段是提出设想时期,美国空军同雷神公司在1967年成功地通过微波向模拟直升机提供动力的试验,这一试验连续进行了10个小时,维持了18米的高度。

    第二个阶段是美国航空航天局研制参考式宇宙太阳能发电系统的时期,在二十世纪70年代后半期到80年代前半期的10年时间里,正式进行了宇宙太阳能系统的开发与研究。有代表的研究成果是“1979年参考式宇宙太阳能发电系统”,这个系统的发电能力是500万千瓦。

    第三个阶段是冷战结束的重新研究时期,美国继续重新研究能否实现比较经济的宇宙太阳能发电系统的问题。

    第四阶段是从新角度出发研究的时期。在二十世纪90年代前半期,社会对能源的需求增加,人们越来越关注地球环境问题,开始探讨宇宙太阳能发电系统在民生方面的时常能力问题,受到好评的是高度为6000米的“太阳塔型宇宙太阳能发电系统”,其传输微波的频率为2.45~3.5千兆赫,这满足了家用微波炉所需要的微波条件。

    第五个阶段是概念设计时期,美国航空航天局根据国会的要求,在1998年3~9月,基于以前的研究成果实施宇宙太阳能发电系统概念设计,研究了同宇宙太阳能发电系统的市场能力、卫星系统的技术开发、宇宙运输的经济性以及对地球环境的影响等问题。

    光伏发电的新技术

    在光伏发电技术的情况下,建造发电设备中所产生的二氧化碳量仅次于水力发电技术,是第二个最低的,在不会产生污染环境的物质,是一种理想的干净发电技术。为发电提供能量的日光在地球上到处都有,实际上其数量是无限的。假定在白天太阳辐射的最高强度是每平方米1千瓦,发电效率为10%,整个地面上每年可能的发电量为1.4亿亿度,这相当于全世界能耗量的大约100倍。这意味着:如果把太阳能电池放置于不到全球陆地面积的1/100,或其沙漠面积的1/20,所发电量就足以满足全世界能量的需求。

    这种再生能源每单位面积的输出功率密度低,所需要的面积大约为烧煤电站的20倍。因此,它不适用于像日本这样的小国由一家电力公司进行中央供电。这种发电应大规模在建筑物上使用,如住宅、工厂、学校和办公室的屋顶。在日本,白天用电量最高;在中午太阳电池的输出功率也最高,因此,这种发电技术最适合。根据日本环境报学中心进行的研究,在日本太阳能电池的市场潜力为1.34亿千瓦,相对应的市场规模为每年670万千瓦。在美国和印度,沙漠面积巨大,目前正在进行的计划是建造188兆(美国)或50兆瓦(印度)的光伏发电厂。由于世界上许多地区适用于大规模光伏发电,作为“新日照计划”的一部分,发展一种全球性的干净能源系统,即世界能源网(WENEF)正在进行中,该计划的目的是在这些地区实现中央光伏发电,用所发出的电使水分解产生氢,氢既可用做能源,又可用做蓄能和输能介质。从保护全球环境和能量生产角度看,实现这一计划很重要。

    太阳电池可粗分为4类:单晶、多晶、化合物半导体和非晶。目前发电最常用且实际应用比例最高的应推晶体型。单晶型的光伏转换效率为15%,多晶型为13%,而非晶型为8%,目前正在研究如何提高效率的问题。

    用污水厂废气发电

    污水处理厂虽能净化水,但也会污染空气,排放出甲烷、硫化物和氮氧化物的羽状烟云,这些废气不仅味道难闻,而且是造成烟雾和导致全球变暖的祸因。如今,纽约的一家污水处理厂正在把废气转变为电力和热力。有关负责人说,在此过程中唯一的副产品就是热水。

    纽约电力局的负责人说,设在北美的一家污水处理厂首次采用新的燃料电池装置,经过一年的运行之后证明效果良好。据他们介绍,该系统可生产200千瓦的电力,足以满足60户标准家庭所需的电力供应。

    纽约电力局负责研究工作的沙洛姆·策林格说,在1998年实施的发电工程中,他们把原本将在空气中自白烧掉或随风飘走的20多吨废气转化成了电力,同时生成的热水可用来加热有助于废物分解的菌类。

    策林格说,燃料电池采用的燃料是氢,诸如天然气和汽油之类的标准矿物燃料以及甲烷中都含有氢。由于燃料电池是利用一种化学反应从氢中获取能源,而不是燃烧氢,因此它们不会产生任何大的污染。

    电力局的负责人说,从中获益最大的是污水处理厂,厂里的设备可利用大量不花钱的甲烷废气,替代天然气或其它一些必须花钱购买的燃料。这些设备还可以用来自垃圾填埋场的沼气发电。

    纽约市负责环境的官员在检查了这些新型设备后表示,他们希望在纽约14家污水处理厂的一些厂里安装燃料电池,以期对一部分废气加以循环利用。目前这些污水处理厂每年产生16亿立方英尺的废气,但大部分都在厂内白白烧掉。

    成本低廉的太阳光(热)发电

    地球所接受的太阳能功率,平均每平方米为1353千瓦,这就是所谓的“太阳常数”。也就是说,太阳每秒钟照射到地球上的能量约为500万吨煤当量,这些能量比目前全世界人类的能耗量大3.5万倍。但怎样有效的利用太阳所恩赐的能量,使其成为本世纪的一大可利用能源,是新能源开发中的一个重要课题。

    太阳能转换为电能有两种基本途径:一种是把太阳辐射能转换为热能,即“太阳热发电”;另一种是通过光电器件将太阳光直接转换为电能,即“太阳光发电”。

    太阳热发电,全世界以以色列的技术最为先进。在吸取加州的技术的基础上,巴西、印度、摩洛哥正在计划进行设备的建设,世界银行已开始提供资金给开发中的国家。因为入射到地球表面的太阳能是广泛而分散的,要充分收集并使之发挥热能效益,就必须采取一种能把太阳光发射并集中在一起,变成热能的系统。一种方法是采用细长的太阳光聚集管子,将管中流动的液体用太阳热集中加热,转换成为高温水蒸汽,以蒸汽涡轮机变换为电。也可以采用抛物面型的聚光镜将太阳热集中,使用计算机让聚光镜追随太阳转动。

    除了太阳热发电技术外,目前人类社会也在大力开发太阳光技术。太阳辐射的光子带有能量,当光子照射半导体材料时,光能便转换为电能,这个现象叫“光生伏打效应”。太阳电池就是利用光生伏打效应制成的一种光电器件。太阳电池与普通的化学电池(干电池、蓄电池)完全不同,是一种物理性质电源。虽然太阳光——照射太阳电池就能发电,但它与一般的发电机大相径庭,它无旋转和磨损,能静悄悄地发电。目前采用光电池利用太阳光的方式还是小规模的分散方式。对人类的贡献而言,太阳光技术可能是至今最优秀的技术,短期的最大功效就是给发展中国家中20亿以上的农村人口带来恩惠。虽然现在的送电网是大规模集成方式的,这并不会使事态变得悲观,因为随着电池效率的提高,制造工程的改善,以及大规模发电所带来的成本降低,在2000年实现每千瓦小时10美分,到2020年预计达到每千瓦小时4美分。

    美国利用各种能源发电的成本目前已接近采用天然气和煤炭发电的成本,因此,太阳热发电具有广阔的前景。

    尚未成熟的风能风力发电

    早在2000多年前,风能就通过帆船风车等装置变换成机械能的形式得到广泛的利用。1890年,丹麦首先利用风能进行发电以来,100多年后的今天,风力发电成为风能利用的最普及的方法。许多风力资源丰富的国家利用这绿色能源来发电,用作通信中转站、航标灯、家庭广告等的电源。

    风能即是流动空气的动能。理论上,风能与空气的密度,迎风面积及风速的3次方成正比。但实际上,由于流过风车后的气流不可能完全静止,理论风能不能得到全部的利用。通常只有60%左右的风能能够转换为机械能。风轮的迎风面与风向垂直时,风能能够得到最大的利用。通过风轮后面的机尾,可以随时调整风轮的朝向,使迎风面尽量与风向垂直。风力发电就是首先将风能变换成机械能,然后由发电机将机械能变换为电能。

    风能的利用形式有以下三种:

    (1)机械能风力抽水排水,粮食加工等,是风能的最早利用形式。

    (2)电能小型风力发电系统通过蓄电池等将电能转变为化学能蓄藏起来保证稳定的供电。而中大型风力发电系统直接将电能输入电网进行利用。

    (3)热能通过摩擦等方法产生热量加热流体来加以利用。由于风能几乎100%可以变为热能,利用效率最高。

    风能是一种自然能源,由于风的方向及大小都是变幻不定,它的经济性和实用性由风车的安装地点、风向、风速等条件综合决定。

    利用海洋温度差发电的新技术

    海洋表面水深0~100米的表层部分,每天吸收大量的太阳辐射热。使海洋表层的温度要比海洋深处的温度高出20摄氏度左右。这一温度差所产生的能量被称作海洋温度差能量。因此海洋可以认为是太阳能的巨大蓄存池。

    如何有效地利用海水温度差能量来为人类服务呢?法国的Ar-sened’.Arsonval于1881年首次提出海洋温度差发电的构想。1930年Claude在古巴的近海,首次利用海洋温度差能量发电成功,但是,由于发电系统的水泵等所耗电力比其所发出电力的更大,结果纯发电量为负值。然而人们并没有泄气。1979年,夏威夷的MINI-OTEC发电系统第一次发出了15千瓦的纯发电量。

    海洋温度差发电的过程是:①将海洋表层的温水抽到常温蒸发器,在蒸发器中加热氨水,氟利昂等流动媒体,使之蒸发成高压气体媒体。②将高压气体媒体送到透平机械,使透平机械转动并带动发电机发电,同时高压气体媒体变为低压气体媒体。③将深水区的冷水抽到冷凝器中,使由透平机械出来的低压气体媒体冷凝成液体媒体。④将液体媒体送到压缩器加压后,再将其送到蒸发器中去,进行新的循环。

    海洋温度差发电与其他的发电形式相比,具有如下的特点:①海洋占地球表面的70%。由于这个能量来自太阳,可以说取之不尽,用之不绝。②海水温度差只有20摄氏度且属于低品位能量,最大转换效率只有4%左右。③属于自然能源,不会造成环境污染,与其他自然能源相比,可以不分昼夜,不受时间季节气候等条件的限制,能量供应稳定。④由于海水具有腐蚀性,生物污损性,因此设备应考虑使用耐腐蚀少污染材料,同时要考虑耐生物污损的对策,由于深海抽上来的海水含有较多的营养成分,有利于提高海洋渔业产量。

    鉴于上述特点,美国、日本等海洋资源丰富的国家,目前正在积极研究及应用海洋温差发电系统,使之在资源短缺的今天,成为人类的有力选择。

    神奇的原子能发电

    一提起“原子弹”,人人可知它的巨大威力。其实,原子能同样也有和平的用途,那就是原子能发电,即利用原子核裂变产生的核能发电的方法。原子能发电所用的燃料是具有发射性的铀-235(或钚-239)。与火力发电相比,它具有以下特点:

    燃料用量少,易于运输和储存;

    燃料更换次数少,一般一年更换一回;

    无空气污染,属于清洁型能源;

    经济。

    目前,应用原子能发电最多的国家是美国、法国、前苏联和日本。中国正处于大力发展的过程中。

    原子能发电与利用煤炭和石油等作为燃料的火力发电原理上是一样的,都是利用蒸汽驱动涡轮发电机来发电,不同的只是用原子反应堆取代了火力发电的锅炉。

    原子反应堆是进行核裂变并将核裂变产生的热能提取出来的装置,是原子能发电的核心装置。其构成要素主要有以下部分:

    原子燃料(如铀-235);

    减速材料,用于减缓核裂变产生的高速中子,以便于更容易进行下一步的核裂变;

    冷却材料,用于取出核裂变产生的热能;

    控制棒,用于控制核裂变;

    防护材料,用于阻挡放射线外泄。

    根据原子反应堆构成要素的不同,有不同的分类。其中,轻水反应堆是目前世界上应用最多的一种,占80%以上。

    原子能发电因其洁净、经济而成为未来的主要新能源。但原子能发电站的建设和维护,需要较高的技术,目前世界上只有少数几个国家掌握了此项技术。中国是其中之一。

    我们都知道,核燃料具有放射性。因此,原子能发电站的建设和运营要充分考虑到安全因素。

    不可思议的航天器对接

    1995年6月27日,载有7名宇航员的美国“亚特兰蒂斯”号航天飞机,从卡纳维拉尔角升空,并开始追赶俄罗斯“和平”.号空间站。最后,以每秒钟不超过3厘米的速度靠近“和平”号”……成功了!成功了!时间定格在了格林尼治时间1995年6月29日13时。

    100吨重的航天飞机,123吨重的空间站,两个庞然大物对接组成了有史以来最重的航天器。它们在预定的轨道上,以相对于地面2.8万千米/小时的速度飞行。当人们在夜晚用望远镜观察这壮美的景象时,航天器里的宇航员们正在紧张地工作……

    在“亚特兰蒂斯”号与“和平”号里工作的,有来自美国、俄罗斯、加拿大和德国四国的宇航员。对接成功后,他们联合开展了一系列空间医学实验。

    7月4日,“亚特兰蒂斯”号与“和平”号脱离。经过“亚特兰蒂斯”号的补给,“和平”号带着充足的资源继续飞行。乘“亚特兰蒂斯”号航天飞机升空的两名俄罗斯宇航员留在了“和平”号上继续飞行,而原在“和平”号上的3名宇航员则乘“亚特兰蒂斯”号,返回了地面。这就使得这架美国航天飞机在返回时的乘客增至8名。7月7日,“亚特兰蒂斯”号按原定计划返回了地面,并带回了“和平”号上的部分实验标本。

    回溯历史,美俄(苏)航天器的第一次空间对接发生在20年前。1975年,美国“阿波罗”飞船和苏联“联盟”号飞船,曾在宇宙中共同飞行了两天。而1995年美国“亚特兰蒂斯”号的这次飞行,也是美国的第100次载人航天飞行。历史发展到今天,航天技术正以日新月异的姿态阔步向前。科学是没有国界的,人类在空间活动中的国际合作作为一种趋势,正越来越受到世人的瞩目。

    明察秋毫的“千里眼”

    航天遥感是航天技术最主要的组成部分之一,相当于电视台摄制节目的技术。

    任何物体都有不同的电磁波反射或辐射特性。航天遥感技术就是利用安装在航天器上的遥感器,来感测地物目标的电磁辐射特点,并将其记录下来,进行识别和判读。遥感器就像电视台的摄像机,它可分为两种:一种是胶片型的,一种是传输型的。

    胶片型遥感需要将航天器(如返回式卫星)回收下来,再对胶,片进行冲洗判读,破译各种信息资料;而传输型遥感则不同,它不需要回收航天器,而是将遥感资料通过电波不断地传到地面。当装有遥感器的航天器经过接收站的上空时,地面接收站对航天器发射的电波信号加以捕捉和接收。航天遥感器分辨率已由最初的几十米、十几米发展到现在的1米以内。

    航天遥感能从不同高度、大范围、快速和多光谱段地进行感测,获取大量信息。航天遥感器还能周期性地得到实际地物的资料,因此航天遥感技术在国民经济建设和军事抗争等很多方面,都获得了广泛的应用。例如应用于气象观测(气象卫星)、资源考察(资源卫星)、地图测绘(测地卫星)和军事侦察(侦察卫星)等等。

    早在1984年,科学家就已经利用陆地卫星上的多光谱红外探测器识别出隐埋古物的特性,在尤卡坦半岛的热带丛林中,发现了玛雅文化的遗址。

    航天遥感技术真不愧是明察秋毫的“千里眼”。

    飞向月球的轨道

    对月球进行探测的无人航天器,我们通称为月球探测器。

    以大椭圆轨道绕地球飞行的航天器,当它的远地点正好朝向月球方向时,也可对月球进行就近探测。但是,一般的月球探测器,或者绕月飞行进行探测,或者在月球上着陆进行探测,由于月球本身处在地球的引力范围内,所以飞向月球的探测器,不必达到第二宇宙速度,只要初始速度大于10.848米/秒,就可飞向月球。飞向月球的探测器,在离月球6.6万千米以前,主要受地球引力作用,它的飞行轨道,是相对地球的椭圆轨道。离月球6.6万千米以后,主要受月球引力作用,飞行轨道是双曲线。

    为了节省能量,飞向月球的探测器,一般先进入绕地球飞行的停泊轨道,然后进入过渡轨道飞向月球,接近月球时,或者绕月飞行进行探测,或者从绕月轨道上下降,在月球上着陆。有的在月球上着陆的探测器,不进入绕月飞行的轨道。而直接从过渡轨道下降,在月面着陆。月球上没有可用作减速的大气,所以着陆探测器要么直接撞向月面(硬着陆),要么用火箭减速,实现软着陆。

    一箭多星的发射技术

    传统的卫星发射方式是用一枚火箭发射一颗卫星,用一枚火箭同时发射多颗卫星进入轨道,是一种先进的航天发射技术。

    一箭多星技术一般采用两种发射方式,一是将多颗卫星一次投放,进入一条近似相同的运行轨道,卫星之间相距一定的距离;另一种是利用多次起动运载火箭的末级发动机,分次分批地投放卫星,使各颗卫星分别进入不同的运行轨道。显然,后者的技术就更为高超。

    为了实现一箭多星,需要解决许多技术关键。首先是要提高火箭的运载能力,以便把质量更大的数颗卫星送入轨道。其次是需要掌握稳定可靠的“星-箭分离”技术,做到万无一失。运载火箭在最后的飞行过程中,卫星按预先设计的程序从卫星舱里分离出来,既不能相互碰撞,又不允许相互污染。还需选择最佳的飞行路线和确定最佳分离时刻,使多颗卫星在各自的轨道上运行。

    另外,还必须考虑运载火箭装载多颗卫星以后,火箭结构角度和重心分布发生变化,会使火箭在飞行中难以稳定,多颗卫星和火箭在飞行中,所载的电子设备可能会发生无线电干扰等特殊问题。

    最早实现一箭多星技术的国家是美国。1960年,美国率先用一枚火箭成功发射了两颗卫星。1961年,又实现了一箭三星。前苏联也多次用一枚火箭发射了八颗卫星。中国于1981年9月20日开始,用“风暴1号”火箭发射了三颗科学试验卫星,成为世界上第四个掌握一箭多星技术的国家。目前,我国的一箭多星技术已达到相当高超的水平。

    用飞机发射卫星

    人们从电视上看到过人造卫星发射的壮观场面。那装载着卫星的巨型多级火箭,耸立在高高的发射塔上,在“轰隆”一声巨响中,火箭尾部喷吐出鲜红的火舌,火箭随即在烟雾中脱离发射架徐徐上升,然后直向蓝天飞去……

    但是,人们现在找到了一种比在地面发射卫星更便宜、更简单的方法,这就是从飞机上发射卫星,即把发射台从地面搬到高空,用飞机代替火箭的第一级。

    20世纪90年代初,美国用一架B-52飞机在大西洋上空13公里处发射了一枚“飞马座”运载火箭,将巴西第一颗人造卫星送人756千米的预定轨道,开创了从飞机上发射卫星的新途径。

    这种别开生面的卫星发射方式之所以引人注目,是因为它有着这样几个特点:

    一是从空中发射时,气压只有海平面的四分之一,从而可使运载火箭的喷管设计简化,因为不需要考虑从海平面到接近真空的工作环境的变化;

    二是由于飞机具有较高的飞行速度,因而可使运载火箭的性能提高1%至2%;

    三是在高空发射运载火箭对火箭本身的结构强度要求较低,而且动压也较低,这对发射很有利。

    总的来说,在运载火箭的有效载荷一定时,从飞机上发射运载火箭所需要的总速度可比地面发射降低10%至15%。

    据科学家预测,在未来的20年内,全世界等待发射的卫星将有上千颗,其中大多数是质量仅为几百千克甚至几十千克的近地小卫星。这些卫星性能好、价格低廉,是卫星家族的主力军。很显然,空中发射卫星的方式,必将在未来航天发射市场上占有一席之地。

    神奇的光子火箭

    光子,就是构成光的粒子。当它从火箭的尾部喷出来的时候,就具有光的速度,每秒可以达到30万公里。如果用光子来作为推动火箭的新能源,我们到达太阳的近邻——比邻星就只要4~5年时间。

    科学家发现,宇宙中还存在着和许多粒子对应的、电荷相等而符号相反的粒子,如带正电的“反电子”、带负电的“反质子”等,这些粒子被称为“反粒子”。

    如果我们把宇宙中存在的丰富的氢收集起来,让它和其“反物质”在火箭发动机内湮灭,产生光子流,从喷管中喷出,从而推动火箭,这种火箭就是“光子火箭”,它将达到光的速度,以30万千米/秒的速度前进。

    虽然湮灭得到的能量十分诱人,科学家在实验室里,也已获得了各种“反粒子”,如“反氢”、“反氚”和“反氦”。但是,它们瞬息即逝,无影无踪。按目前的科学技术水平,不可能将它们贮存起来,更难以用于推动火箭的飞行。

    但是,科学家还是乐观地认为,光子火箭的理想一定会实现。他们设想,在未来的光子火箭里,最前面的是宇航员工作和生活的座舱,中间是粒子和“反粒子”的贮存舱,最后面是一面巨大的凹面反射镜。粒子和“反粒子”在凹面镜的焦点处相遇湮灭,将全部的能量转换成光能,产生光子流。凹面镜反射光子流,推动火箭前进。

    推动“月亮女神”的火箭

    电火箭也是一种火箭,其作用是在飞船或卫星升入太空后控制飞船或卫星。

    与常规火箭相比,电火箭的力量要小得多,它不可能去发射火箭。常规火箭的推力能达3000万牛顿,这个巨大的能量可以将成吨重的卫星或航天飞机送上太空。而一般电火箭的推力仅仅有1/50牛顿,这个力量就显得太小了,它只能在地面上托起一只乒乓球。但即使是这样小的力量在太空中也就足够了,因为在太空中几乎没有什么阻力。

    电火箭有三种类型:最简单的是电热系统,在火箭内部装有氙一类的惰性气体,这种气体被电能加热后从喷口喷出,于是就产生了反向推力;第二种是静电系统,用电能将惰性气体推进剂离子化,然后用电场把离子化气体中带正电的离子加速并向后喷射出来;第三种是电磁系统,它的原理与静电系统相同,就是电能更大一些。

    实际应用的电火箭常常是电热系统和静电系统相结合,欧洲航天局的科学家们在新的通信卫星“月亮女神”号上安装了4支电火箭。

    电火箭的另一个重要应用是使卫星精确定位。欧洲航天局的科学家们在2000年发射了6颗卫星,用电火箭定位,使它们相距500万公里而位置精度达到了1厘米,科学家们对电火箭这项新技术充满信心。

    各显其能的众星行空

    1895年,火箭之父齐奥尔科夫斯基在他的《地球与天空之梦》一书中曾这样写道:“设想中的地球卫星是同月球相似,不过它离地球比较近,只在地球大气层外足够远,也就是说,离地球300俄里远”。这位靠自学成才的赫赫有名的科学家不仅在世界上第一个提到’人造卫星”这个名字,发表了由他自己构思的卫星图样,而且还首先提出了以人造卫星为宇宙航行的中转基地,向月球和其它星球发射火箭的伟大构思。

    1957年10月4日苏联发射成功第一颗人造卫星,终于实现了齐奥尔科夫斯基的百年梦想,此次发射震憾了全世界,激励人们用更大的热情去探索太空,人造卫星一词也因此成了家喻户晓的一个最时髦的语言词汇。但这颗重83.6公斤、直径58厘米、用铝合金制作的球状卫星。除了附在球上的四根弹簧鞭状的天线,卫星内装有一台磁强计、一台辐射计数器和一些测量卫星内部参数的一些传感器外,并没有装什么特别的仪器。因此,人们对人造卫星到底有哪些用途,如何造福于人类,也只是停留在设想和探索性试验阶段。60年代,科学家们为了实现卫星造福于人类的设想,开始在卫星上安装使用了各种特殊的仪器设备进行遥感、信息传输和收集各种探测数据的应用试验。与此同时,随着电子信息、新材料、自动化等高技术的蓬勃发展,突破了卫星应用领域众多的关键技术,大大地扩展了卫星的应用范围。这样,从20世纪70年代以来,各国争先恐后,把开拓航天技术的重点,首先转向卫星应用技术的发展,逐步形成了通信、,导航、气象、资源、科学、军事应用和深海探测等专用卫星系统。卫星应用技术造福于人类的作用也越来越显着。

聚合中文网 阅读好时光 www.juhezwn.com

小提示:漏章、缺章、错字过多试试导航栏右上角的源
首页 上一章 目录 下一章 书架